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Emerging Wireless Networks
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* Emerging wireless networks refer to newly developed or
evolving wireless systems to meet the demands of modern
applications such as high data rate, low latency, high reliability

* WhyEmerging wireless Networks? « Applications (e.g., Ag-loT, BAN, VANET)
o To meet the escalating demand « Technologies (e.g., Wi-Fi 6/7, molecular comm)
for faster, efficient, more reliable, « Enablers (e.g., 5G+, Al, SDRs),
and ubiquitous Connectivity. * Trends (e.g., loT growth, infrastructure decentralization).
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Emerging Wireless Networks

Transportation

A smart traffic
lights

road-side unit

77
0y
70,
0y
0

ighes

s &
y ' -
= 5

(= ) '

e =
sogn || sovsogen |
Mosic

 Key Challenges:
o | Security
o Spectrum allocation
o Infrastructure development
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Conventional Settings - Security
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Existing Solutions

* Traditional secret-based technique

* Manually enter passwords - Challenging to implementin 0010101110111111011101

pacemaker 1@
insulin <&
pump

devices lacking keyboards or screens.
* Preload default passwords - Commonly left unchanged,
location tracking
making them prone to eventual leaks.

* Public key infrastructure — involves complexity, overhead

and dependence on centralized trust.
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Secret-Free Trust Establishment

Trust Establishment

=~ Alice

Trust Establishment Includes

* Message Integrity Verification
* Authentication

!

Secure and Reliable Communication

%%ﬁ
i

* We want In-band trust establishment using difficult-to forge physical layer

features
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Can we do Trust Establishment in unconventional settings?

Yes!

1. Underground Wireless Networks
2. Autonomous Vehicular Networks



Motivation - Unconventional Settings

* Underground Wireless Networks
e Different channel properties underground vs. over-the-air (OTA)
* No access for out-of-band verification

* Time sensitive messages

* Autonomous Vehicular Networks
* Rapidly moving channel (High mobility)

* Time sensitive nature of messages



Objective

* Use hard-to-forge physical layer characteristics for device authentication

and secure key establishment.
* Received Signal Strength (RSS) -> Underground Wireless Networks
 Channel Impulse Response (CIR) -> Over-The-Air and Underground Wireless Network

* Trajectory and Motion Vectors (TMV) -> Autonomous Vehicular Networks



Security in Underground Setting for Ag-loT
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STUN: Secret- Free Trust Establishment Protocol for
Underground Networks

e Benefits:

* Increased productivity and crop yield 0

* Prevents flooding and soil drought

* Motivation:
e Secured transmission and reception of data

* Prevention of active signal injection attacks

11



System Model
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* Underground and aboveground wireless channel properties are not the same.
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Threat Model
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Type 1 Adversary

* Type 1 adversary which attempts
to inject its signals simultaneously
atGandT

* Adversaryis outside the perimeter
of the farm.
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Type 2 Adversary

* Type 2 adversary can deploy

additional nodes above and
underground to achieve the

receive signal strength (RSS)
atGand T
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STUN: Trust Establishment Protocol

Key
establishment:
Receives
message
computes
pairwise key
Kgi « (zg)%

F

G

Initialization

Sync Message

Sync Message

Compute and transmitm; < ID;, z;

Compute and transmitm; < ID;, z;

G Records RSS
forL, Pr; =
{Pr;(1), ..., Pr;(1)}
alsofor T, Pry =
{Prr(1), ..., Pry(1")}

Compute and transmitmg « [Dg, z;

Transmitmy = AEg.(m] Il IDy, ..., mj, Il IDy,)

Records RSS
Prr; = {Prri(1),
ooy Prpi (1)}

Decrypt m} to obtain m!} || 1D,
and compares m; = m! or not.

Verification Criterion:
T T
Tlow <yk)= Thigh

Key establishment:
G computes pairwise key
Kg;i < (z))%c

Step 5

Verification
Criterion:

T{ow < PrTi(k)S

T
Thigh

Step 3
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STUN: Received signal strength verification

* Verification at T (step 3): RSS at T
T T . _
Tiow S < Thigh Vi = 1, .., N
* Verification at G (step 5): RSS at G

Tlow S S Thigth — 1, ...,l
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Experimental Setup

* We utilize a 433 MHz Underground testbed with 30% volumetric water content.
* Testbed utilizes antenna with A = 30-69cm
* G uses Full-Wave dipole antenna

* Land T uses Single Ended Elliptical antenna with 10dB gains

| Distances dZ2% =0.35m, d&’ =0.40m, d274 =7.8m, d2/4 = 7.0m, d57 =~ 2m

* Power transmit =10mW, 37 bytes packet size, 100ms inter packet time and TinyOS

app to implement message transmission between nodes.
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Experimental Evaluation: Type 1 Adversary
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* Condition for adversary to defeat type 1 adversary derr ()

Plot of distance and power transmitted against distance between T and G.

* Equaltransmit powers in step 3 and 5to pass

the verification at the distance, d;;; simulataneously.
Very
high
* M must be place extremely far from G distance
* Step 3 fails
* High attenuation.
) i i | | | —f = 600MHz
Adversary needs to transmit very high power (L T e s

transmit on 3W) der (m)

— f = 200MHz
— f = 433MHz
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Experimental Evaluation: Type 2 Adversary
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Summary

* We address the problem of Trust Establishment for underground wireless
networks.

* We used hard-to-forge underground wireless propagation laws to achieve
In band node authentication and secret establishment.

e We demonstrated that STUN is resilient to advanced attacks.

 [Oguchi, Ghose, Vuran, 2022, IEEE INFOCOM Wkshp Wireless-Sec]
* [Oguchi, Ghose, Vuran, 2024, IEEE TWC (Under-submission)] 21



Location Authentication for Over-The-Air and Underground
Wireless Networks

* This work is a collaborative effort with Hakim Lado.
22



Radio Frequency (RF) Fingerprinting
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« Operating Principle: * Uniqueness Causes:
e No two devices have * Hardware impairment/
the same fingerprint Manufacturing process variation
e Serves as discriminative features
* Uses:
* Device ldentification . .
e Device Authentication * Examples: Phase Noise, IQ imbalance

* |ndoor positioning and tracking
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Can we leverage physical-layer channel features for location

authentication across different environmental setups?

Yes!
CIR-based CNNs with fine-tuning

24



RF Fingerprint-Based Location Authentication for Over-The-
Air and Underground Wireless Networks

+ Why is CIR Hard-to-Forge? D
* Location Specific -> captures multipath profiles of wireless channel

* Fine-Grained: Sensitive to small spatial and temporal variations,

ideal for CNN learning

* Device-agnostic but environment-sensitive:
 Evenif an attacker uses the same hardware, small location changes
can significantly alter the CIR due to phase shifts and reflections.
* Non-linear Mapping:
 CIRfeatures used in deep learning are extracted via complex, high-dimensional transformations,

which are not easily invertible or imitable.
25



System Overview

1% Iraining Sr:ena rio
-P Dataset Preprocessing
m . ﬂ@_‘[l CIR Ex‘tractan

Transmitter (T'x;): Sends signals from authorized

2. Mormalization
3. Filtering

locations (I;).

* Receiver (Rx;): received I/Q samples then extracts Authorized Location Zone

CIR.

X o
_, OIEe 1. ADA 0
* Finetune

-~ W

. ] Legit or Not Er:reT Transfer Learning  Model Train ing
Server (S): Compares received CIRs to determine =~ [~~~ "~ """ TTTTToToTToomomooooo :
legitimate vs. adversarial location. (((i e Q@
Adversary TX :
Attack Scenario locX e :

Key Assumptions: e G L R L L L TR S EEE '
* No pre-shared secret or encryption needed.
* CIRisused as alocation fingerprint.
 System is agnostic to modulation, protocol, and minor
device variations.
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Threat Model

1.
2. Mormalization
3.

* Adversary Types:

Filtering

g
1% lraining Scena rn::rmm:amt Preprocessing
.m @ [ CIR Ex‘tran::tan
I a3 m _P -

4. Slicin

* Friis Empirical Attacker
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:
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|

: XX o
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* Knows only distance information ! ? o 2. _Finetune -
| LegitorNot | _ Server ___TransferLeaming__ Model Training _
 Can estimates CIR using Friis’ equation !
* |gnores multipath and noise effects | (((t armZg ¥
1 Adversary TX :
| Attack Scenario locx ZEmms :

 Ray-Tracing-Enhanced Adversary = AttackScenaro ~ locX —==l™
* Better mimics multipath reflections and physical layout
 More powerful than Friis attacker

Assumption: No access to the server and legitimate CIR for spoofing

Goal: Fool the model by imitating location fingerprints from different zones .



RF Fingerprint-Based Location Authentication Framework

TRAINING PHASE

1. Signal Reception from
Transmitter

!

2. CIR Extraction

A 4

3. Preprocessing of CIR
Butterworth
Denoising (Optional)

A 4

4. Model Training
Save Trained CIR weights in
database for Inference

Filtering

K

ResNet

Filtering

AUTHENTICATION PHASE

1. CIR received

2. Preprocessing of CIR
(Optional)

l

3. Model Inference:
Load Trained Weight
to compare CIR

\4

v

4. Authentication Decision:

Legitimate, if Predicted = actual
Else — Reject as adversary

Note: Signal is received from transmitter from one location and can test transmitters at multiple locations.
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Mitigating Device Bias in CIR

* CIRIs primarily location-dependent
* Reflects propagation environment between a transmitter (Tx) and receiver (Rx):

multipath, delay spread, attenuation, etc.

* CIRcan still be device-affected
 Hardware imperfections: Different oscillators, filters, ADCs.

* Antenna patterns: Even slight variations can change received paths.

* Techniques to remove device effects from CIR

* Filtering/preprocessing, Denoising, Transfer Learning / Fine-Tuning

29



System Architecture

COMPLETE MODEL PERFORMANCE ANALYSIS FOR LOCATION AUTHENTICATION

Model Best Performance Reliability Key Characteristics

ResNet-50 85-95% Excellent across all scenarios Deep residual learning, handles complex spatial features

ResNet-34 80-92% Very Reliable, best overall Optimal depth-performance balance, consistent across environments
ResNet-18 75-90% Very Reliable Lightweight yet effective, good for resource-constrained deployment
In-Lab Model 70-85% Reliable in controlled settings Custom 5-layer CNN, baseline comparison model

GoogleNet 60-70% Reasonably Reliable in ADA + Filtered settings | Inception modules provide moderate feature extraction

VGG16 50-60% Inconsistent across TX/distance Too deep without skip connections, suffers from vanishing gradients
VGG19 ~33% Unreliable, fails to generalize Severe vanishing gradient problem, cannot learn location features

Machine Learning Models
 ResNet-18/34/50 (Better)
* Compared with: In-lab, VGG16/19, GoogleNet
* Metrics: Accuracy, Stability, Reliability

COMPARATIVE PERFORMANCE ANALYSIS OF FILTERING METHODS FOR

. . LOCATION AUTHENTICATION
* Processing Pipeline:

* Filtering -> Butterworth (Better) Filtering Method | Best Performance Stability Reliability

« Compared with: Moving Average, Elliptic [ Butterworth — High ERE

e D ising Aut d Moving Average ~50-60% Very Poor Unreliable
enoising Autoencoder Elliptic ~60-70% Extremely Poor | Completely Unreliable

* Domain adaptation / fine-tuning -> Improve our results



Experimental Setup

/N
(a) Indoor setting

* OTA testbed
* Varying USRP (B-series) Transmitter/Receiver devices at various fixed locations
 Same R, Different T,
* Different R, Different T,
* Varying USRP distances (4ft, 5ft, 6ft)
 Same R, Different T,
* Same R, Same T,

(b) Outdoor setting

31



Outdoor Evaluation: Accuracy

== RisHatld-Fneum =
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0.4
= B Tx2

Distance (ft)

(a) Butterworth Finetune

Tx4
Transmitter
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=M= Pasiien18-Firmtuta
== Rashit3d-Finatune
4 =i ResMesSO-Finetuna ﬂ i -

== In-Lab

[ == Fandom Guess Oasalie 035 _ _ o o e o e o

aft

St Bft
Distance (ft)

(b) Denoised Finetune

e ResNet-50 achieved > 80% across devices and distance
* Fine-tuned models + filter outperform baselines -> Best performance

* Domain adaptation/finetune improves generalization

TX2 TX3 TX4 TX5S  TX6
Transmitber
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Indoor Evaluation: Accuracy

B _._______.—-—-—'_-_-. '},E
== RisHatl8-Finetune a =i Riskatl 8-Fiet e
= RisHet3d:-Fnetune i = Riskeidd-Fnetu ne
== ResMetS0-Finetune = = ResketS0-Finetune
= Inlak w06 == Frint-Finehane
== = Rereinm Guess Hassline (0013] é = = Hargom Gusess Baseline (0315

o e e — — — — ———— —

T2 Tx3 Tx4 TXS TX6
Transmitter

Distance (ft)

(a) Distance (a) Devices

* ResNet-50 achieved > 85% across devices and distance
* In-lab — unstable compared to ResNet
* Fine-tuned models + Butterworth + ReLU-> Best performance

* Denoising does not do well for Indoor Scenarios
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Robustness Analysis — Friis-Based Adversary

* Friis-Based Adversary Model: . Legitimate:
A —jimd
heriis(d) = /GGy (Ee 7 ) Y = hpy_mxX +1n

* Adversary:

* Attacker constructs synthetic channel using:
Y = hpy_aavXaav + 1

Xgav = hFriis(de—Rx)X

XAdv = hFriis(de—Rx) th—Adv

 Goal: Mimics legitimate CIR

Y =|hpx—aavXaday + N = hpx—rxX +1

Friis attackers fail to replicate fine-grained CIR features due to:
* Environmental multipath variability — Minimal or no knowledge
* Asingle-tap approximation

* |nability to mimic deep features captured by CNNs
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Robustness Analysis: Ray-Tracing-Enhanced Adversary

1.00 - == Logit: 4Tt 1.00 1 —— Legit; 4ft 1.00 4 —a— Lagit: 4ft 1.00 e
—m= Lagit: Sft =m= Legit: 5ft == Legit; 5ft —m= Lagit; 5ft
== Lagil: GIL =—dr— Legil: it == Lagil: Gt —i— Legil: Gt
0.75 — - Random Guess (0.33) | __ 0.75 —= Random Guess (0.33) | 0.75 = = Random Guess (0.33) . 0.75 1 — = Random Guess (0.33)
@ & i
5 g 5
_\ E 0.540 4 a 0.5 - E 0.54 -
‘E i i i |
- - - - = = = i i Ly . . R ——— =i i i -
ns-/ s o 0.26 - n.s-j
10m 20m 30m 40m 1am 20m 30m 40m 10m 20m 30m 40m 10m 20m 30m 40m

Adversary Distance {m) Adversary Distance (m) Adversary Distance (m)

(a) indoor (a) outdoor

Evaluation Findings:

* It still fails to breach model defenses: accuracy for adversary remains ~33-35%

* CNNs learn non-trivial spatial-temporal patterns difficult to replicate

Our Conclusion:

Adversary Distance {m)

* Even with ray-tracing-generated CIRs, attackers fail to replicate the true distribution of legitimate

channel responses, reinforcing the robustness of our location authentication system.
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Summary

Location Authentication with RF fingerprinting is viable in dynamic environments
Deep learning + CIR features can resist advanced spoofing

No secrets or key exchange required

Future Work
* Investigating the cutoff distance/range in indoor and outdoor experiment.

* Testwith underground dataset

[Oguchi, Lado, Ghose, Wang, Vuran, 2025 - In Preparation]
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Security in Mobile Setting for Connected Autonomous Vehicles

37



Vehicular and Ad-hoc Networks
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Enhanced road safety
Improved traffic management
Passenger infotainment
Reduced Traffic Congestion
Better driving decision making
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Can we securely verify the truthfulness of the location and velocity claims

of an incoming vehicle to prevent attacks?

Yes!
Trajectory and Motion Vectors (TMV)

39



VET: Autonomous Vehicular Credential Verification using
Trajectory and Motion Vectors

M Verifier B
&— W
 Location and Velocity Information 4
Prover A /

 Location = Direct Estimation

* Velocity = Frequency of Arrival

40



System Model

* The Legitimate Prover A
* Auses omnidirectional antenna
 Hasvalid credentials (PKI or Symmetric

key)

* The Verifier B
e Other truthful verifier X
* Perform verification independently

* Verifiers do not require mutual trust.

@\//
\

Prover \_} — Verifier
ALy A% 5

o=
‘r.‘.' X
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Threat Model

Y
(‘i\&o 2
R ‘)\(‘ ~ -
» -
O; @
/ —
\
( M ———————= -

Remote Attacker

* Hasvalid credentials
* Within the communication range of B

* Attempting to Inject messages without

modifying PHY-layer data

@

\E\stimated Trajectoryat B _W97
-
i P —".
/ -
( M \ Estimated Trajectory at X

Emulated Trajectory at X

O

Remote Advanced Attacker

~ ~

Has valid credentials
Can additionally intentionally

modifying PHY-layer data.

42



VET: Credential Verification using Trajectory and Motion Vectors
A B X

Initialization

AEx(RTA)

N
e

Grants Limited Access

Receives M, Extract V, L
Transmit Claimed messages AE, (M) Captures F and Extract v

Verification Criterion:

N ? n ?
Partial access Else Fail || RMSE(V, V') _pu, RMSE(L, L) _e

Compute and transmit TMVsto X notto B

Sniffing packets J|| Estimate and Compute tx not to B

Captures F, extract V',L' where t # t'
Interpolate with Claimed V7, £

Broadcast Decision Verification Criterion: N

RMSE(V,V") ;u, RMSE (L, L) ;e

Grant Fullaccess Else Fail




Experimental Setup

We utilize a USRP 2922 for the prover A, verifiers B, and X

We broadcast BPSK signals at center frequency f, = 915MHz running GNU radio code.
The prover and verifiers are connected to a Lenovo ThinkPad T14 laptop

A GPS enabled phone that collects the ground truth location and velocity

All laptops and phone are synchronized to use the same Network time protocol server.
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Experimental Evaluation: Correctness Analysis

€e=0.2 k=3 k=3
8
5]
]
g
s
Q
£
[€=0.3 02 k=5 =03 k=5
i ;
—e = 0.2 —k =3 - | e 5
—up =02
e=0.1 k=2 k=2
0 . | . : 0 . - ‘ . ‘ . . p=01 0 . . . .
0 0.2 04 0.6 0.8 1 0 0.2 04 06 0.8 1 O 0.2 04 06 08 | 0 0.2 04 0.6 0.8
False Positive Rate False Positive Rate “ False Positive Rate False Positive Rate
ROC for Location ROC forvelocity

* We implement FOA and Direct location estimation and compute the ROC
* We compare our results with ground truth data.
* We evaluate two parameters

* The acceptable errors (e, ) to set

 The number of trajectory point (k) required to complete the verification.
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Experimental Evaluation: Robustness Analysis

q wnipeis

>

wnipeis
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CIaimedectory Ady g = 120m dyp = 120m

e idy B = 150m EEIdMB = 150m
2 4 6 8 : 4 6 8 10

Trajectory k k

e The Remote Attacker

* VET can detect remote moving adversary attempting to inject rogue messages

* As distance increases, the probability of success decreases.
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Experimental Evaluation: Robustness Analysis

Very low

Very low

t F—f - w0
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N 2 S
e 2 z
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9 Emulated Trajectory at X Adyp = 120m 2
X 10-8 —dy g = 150m
/ S = ‘ / l L . . ; : =
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. k
Trajectory Location

e A Remote Advanced Attacker

* We compute wireless Channel hyz and hyx

* Adversary utilize the knowledge of the channel to emulate X

* Probability of Success is very low

Velocity
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Summary

* We address the problem of secure veracity verification for automomous vehicles using

trajection and motion vectors

* Weimplement a location and motion based strategy that verifies the claimed

TMVs from randomly estimated TMVs

* VET can detect remote adversary injecting spoofed messages with 97% true

positives

[Oguchi, Ghose, 2023, EAl SecureComm]
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Thank you!
&

Questions?
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