

Authentication and Message Integrity

Verification For Emerging Wireless Networks

Final Dissertation Defense

Ebuka P. Oguchi

School of Computing

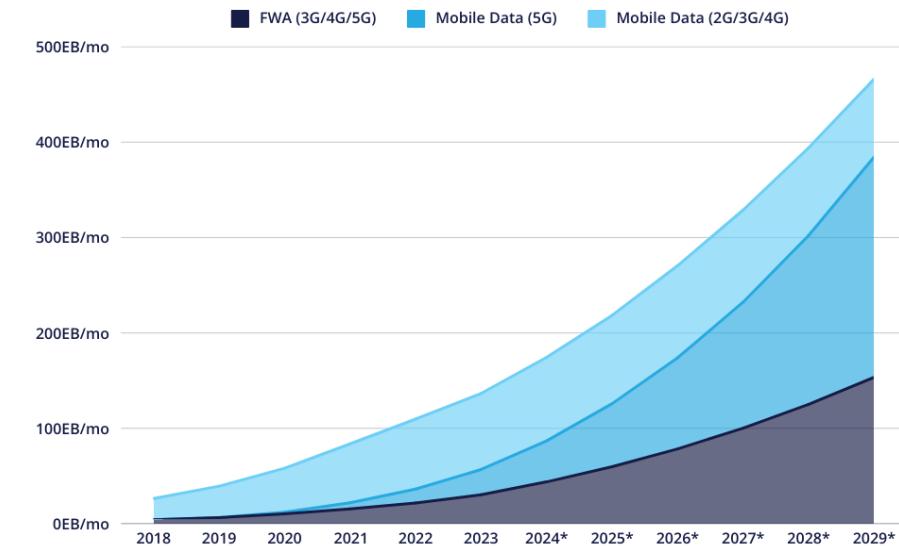
University of Nebraska-Lincoln

Advisor: Dr. Nirnimesh Ghose

Committee: Dr. Mehmet C. Vuran
Dr. Massimiliano Pierobon
Dr. Yi Qian

Emerging Wireless Networks

Annual Mobile Data Traffic Worldwide



1 Exabyte = 10^{18} Byte

- Emerging wireless networks refer to newly developed or evolving wireless systems to meet the demands of modern applications such as **high data rate, low latency, high reliability**
- Why Emerging wireless Networks?
 - To meet the **escalating demand** for faster, efficient, more reliable, and **ubiquitous Connectivity**.
 - **Applications** (e.g., Ag-IoT, BAN, VANET)
 - **Technologies** (e.g., Wi-Fi 6/7, molecular comm)
 - **Enablers** (e.g., 5G+, AI, SDRs),
 - **Trends** (e.g., IoT growth, infrastructure decentralization).

Emerging Wireless Networks

Transportation

smart traffic lights

road-side unit
110110010

Health

fitness tracking
pacemaker
insulin pump

health monitoring

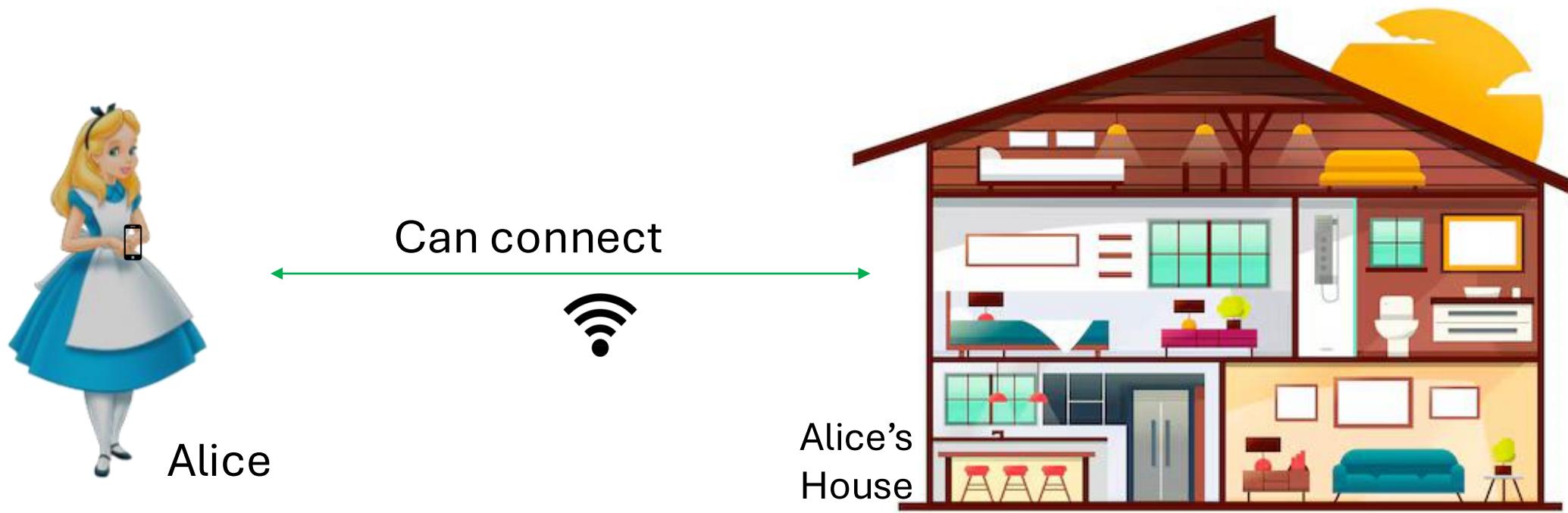
nutrition tracking

location tracking

Agriculture

- Key Challenges:
 - **Security**
 - Spectrum allocation
 - Infrastructure development

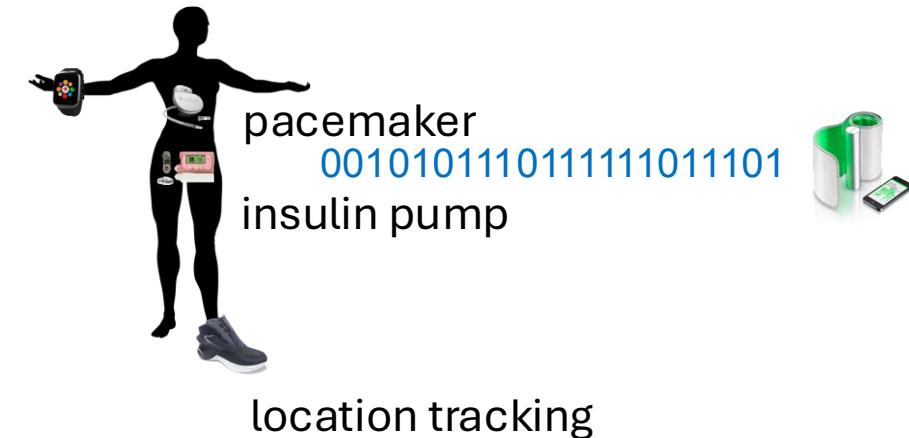
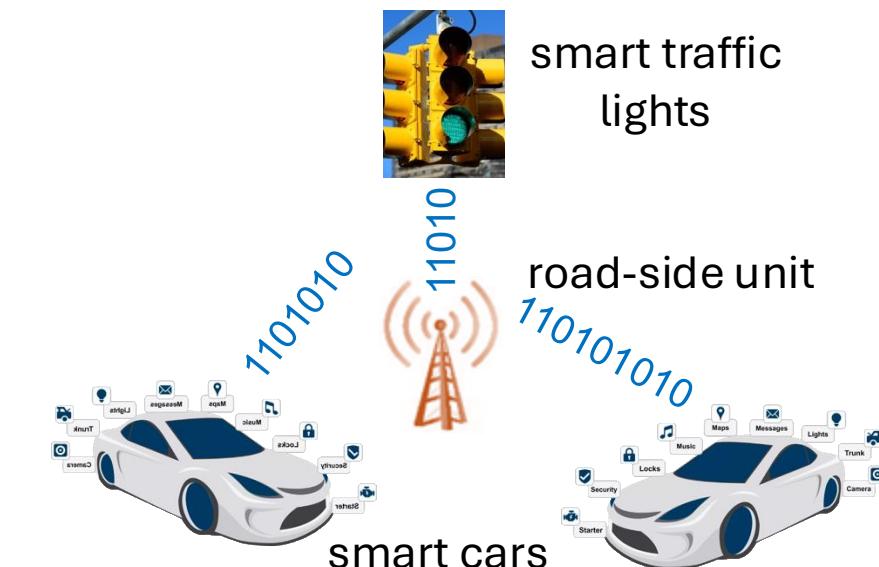
Conventional Settings - Security



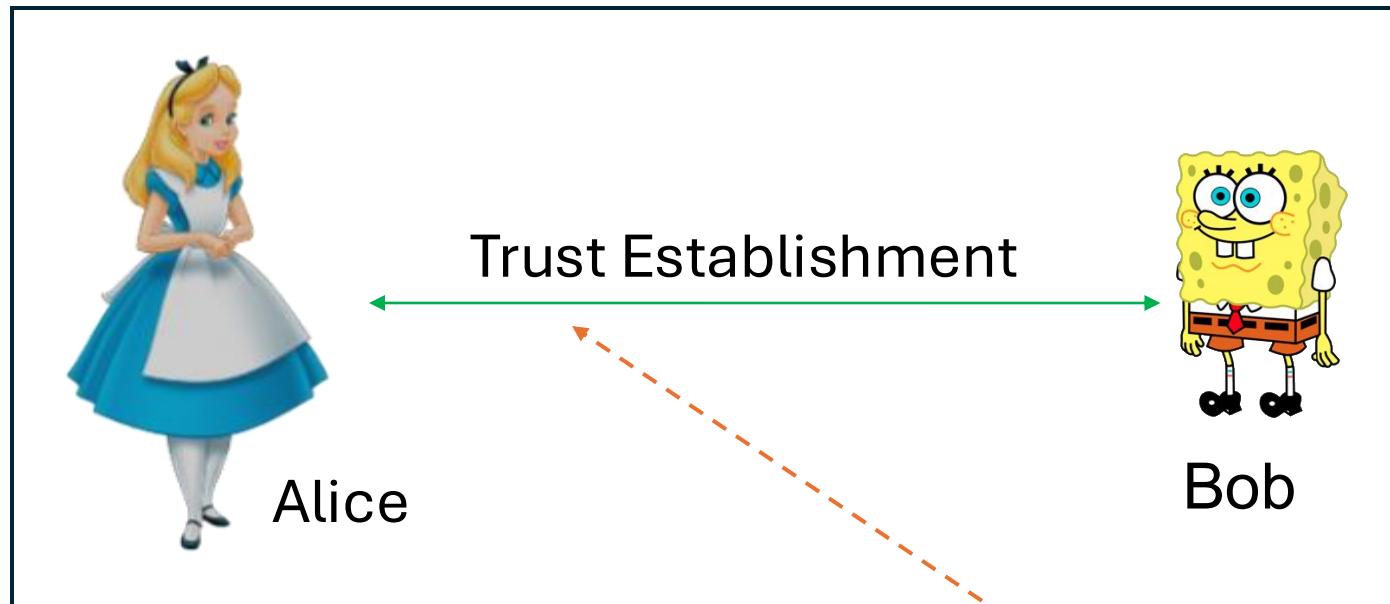
1. Secret-Based – keys, password
2. Stationary or slowing moving channel
3. Out-of-band technique - Display
4. Over-the-Air channel

Existing Solutions

- Traditional secret-based technique
 - Manually enter passwords - Challenging to implement in devices lacking keyboards or screens.
 - Preload default passwords - Commonly left unchanged, making them prone to eventual leaks.
 - Public key infrastructure – involves complexity, overhead and dependence on centralized trust.



Secret-Free Trust Establishment



Trust Establishment Includes

- Message Integrity Verification
- Authentication

Secure and Reliable Communication

- We want In-band trust establishment using difficult-to forge physical layer features

Can we do Trust Establishment in **unconventional settings?**

Yes!

1. Underground Wireless Networks
2. Autonomous Vehicular Networks

Motivation - Unconventional Settings

- Underground Wireless Networks
 - Different channel properties underground vs. over-the-air (OTA)
 - No access for out-of-band verification
 - Time sensitive messages
- Autonomous Vehicular Networks
 - Rapidly moving channel (High mobility)
 - Time sensitive nature of messages

Objective

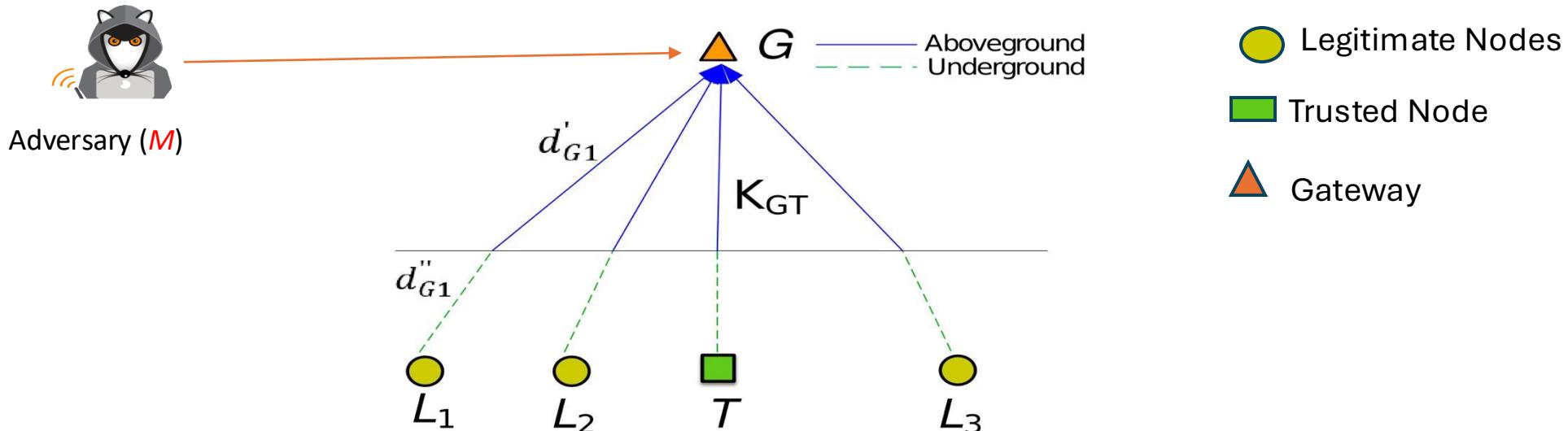
- Use hard-to-forgo physical layer characteristics for **device authentication** and **secure key establishment**.
 - Received Signal Strength (RSS) -> **Underground Wireless Networks**
 - Channel Impulse Response (CIR) -> **Over-The-Air and Underground Wireless Network**
 - Trajectory and Motion Vectors (TMV) -> **Autonomous Vehicular Networks**

Security in Underground Setting for Ag-IoT

STUN: Secret- Free Trust Establishment Protocol for Underground Networks

- Benefits:
 - Increased productivity and crop yield
 - Prevents flooding and soil drought
- Motivation:
 - Secured transmission and reception of data
 - Prevention of active signal injection attacks

System Model



- Underground and aboveground wireless channel properties **are not the same**.
- Underground-to-Air channel Model $P_{r_i} = \frac{P_{tG \times G} \times G_i}{PL_{ug} \times PL_{ag} \times PL_R}$.

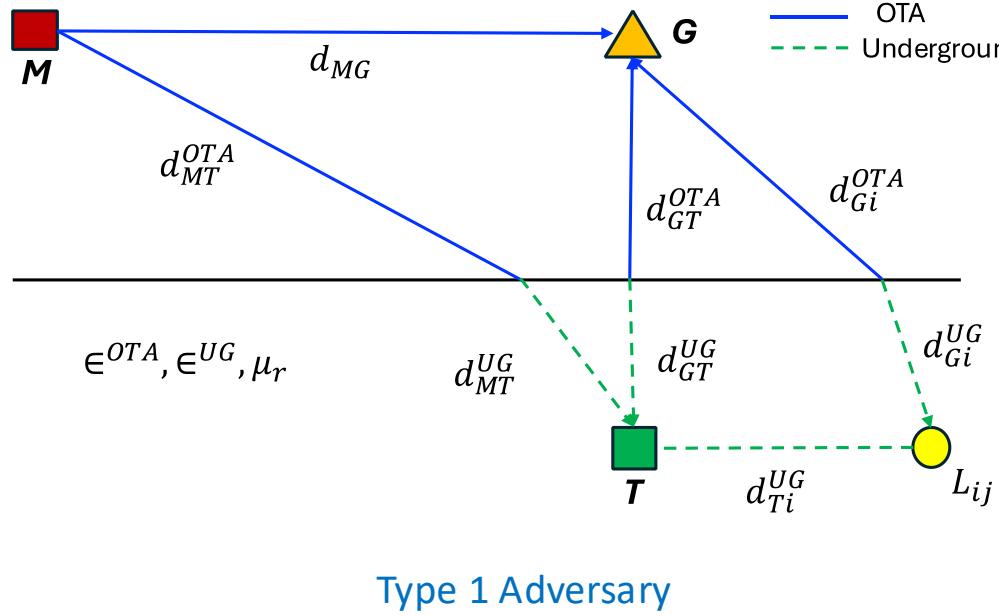
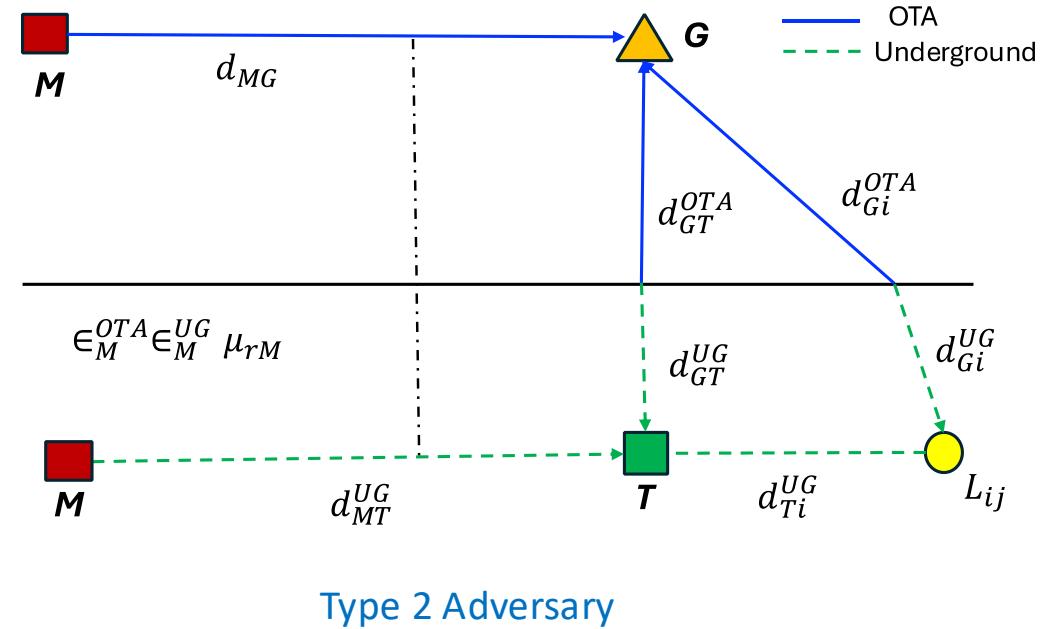
Diagram showing the components of the underground-to-air channel model. A dashed line connects the gateway to a legitimate node. Three equations are shown in ovals:

$$PL_R = PL_{RAG-UG} = (r + 1/4)^2$$

$$PL_{ug} = 10^{(0.64+0.89\alpha d_{Gi}^{ug})} \times (d_{Gi}^{ug} \times \beta)^2$$

$$PL_{ag} = \frac{(d_{Gi}^{ag})^\eta \times f^2}{10^{14.76}}$$

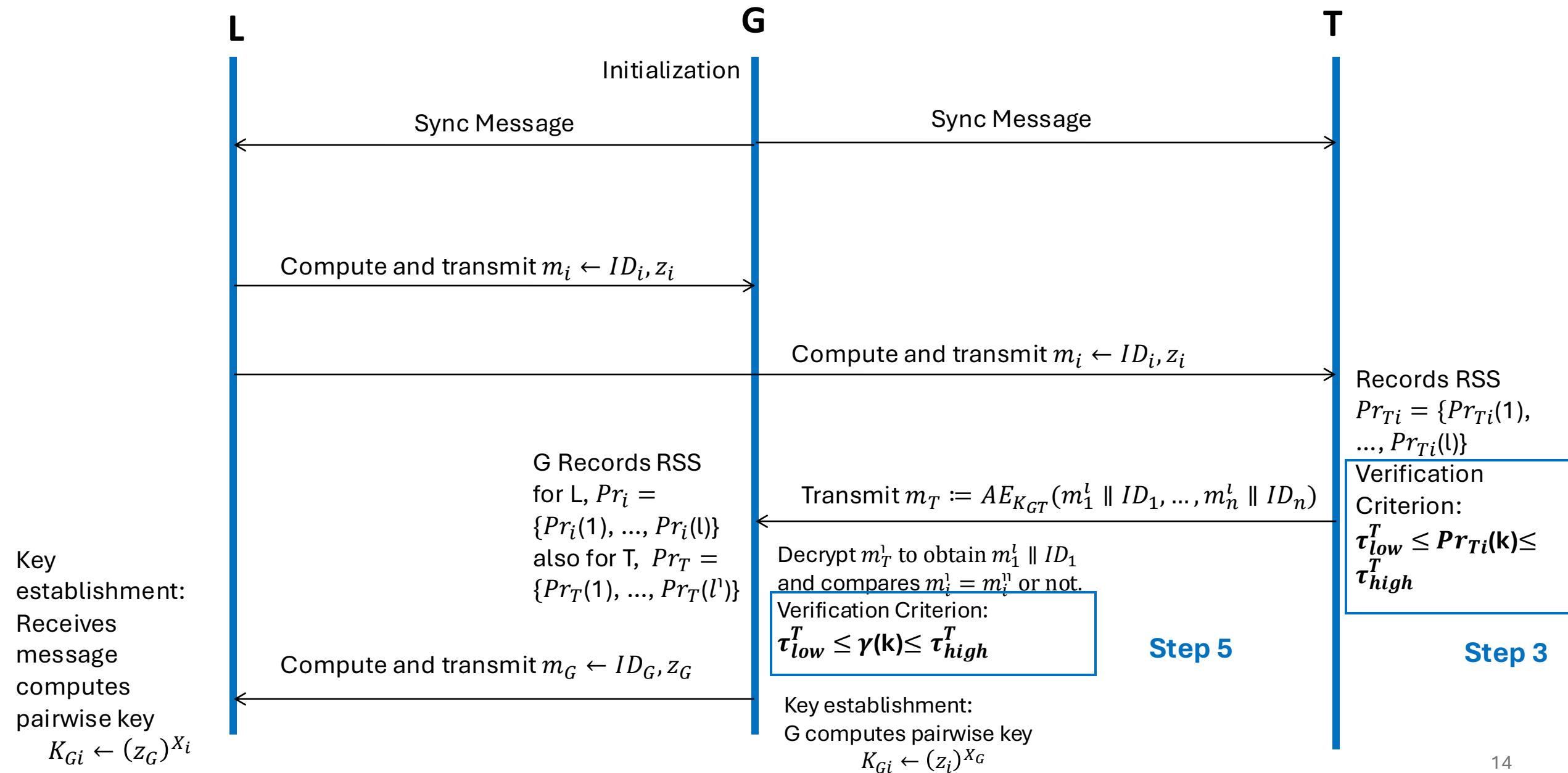
Threat Model



- Type 1 adversary which attempts to inject its signals simultaneously at G and T
- Adversary is **outside** the perimeter of the farm.

- Type 2 adversary can deploy additional nodes above and underground to achieve the receive signal strength (RSS) at G and T

STUN: Trust Establishment Protocol



STUN: Received signal strength verification

- Verification at T (step 3):

$$\tau_{low}^T \leq \Pr_{T_i}(k) \leq \tau_{high}^T \quad \forall i = 1, \dots, n$$

RSS at T

- Verification at G (step 5):

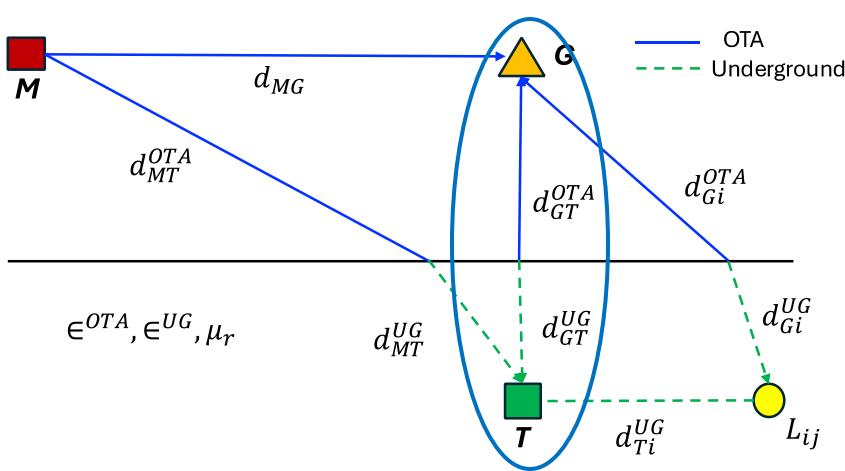
$$\tau_{low} \leq \gamma(k) \leq \tau_{high} \quad \forall k = 1, \dots, l$$

RSS at G

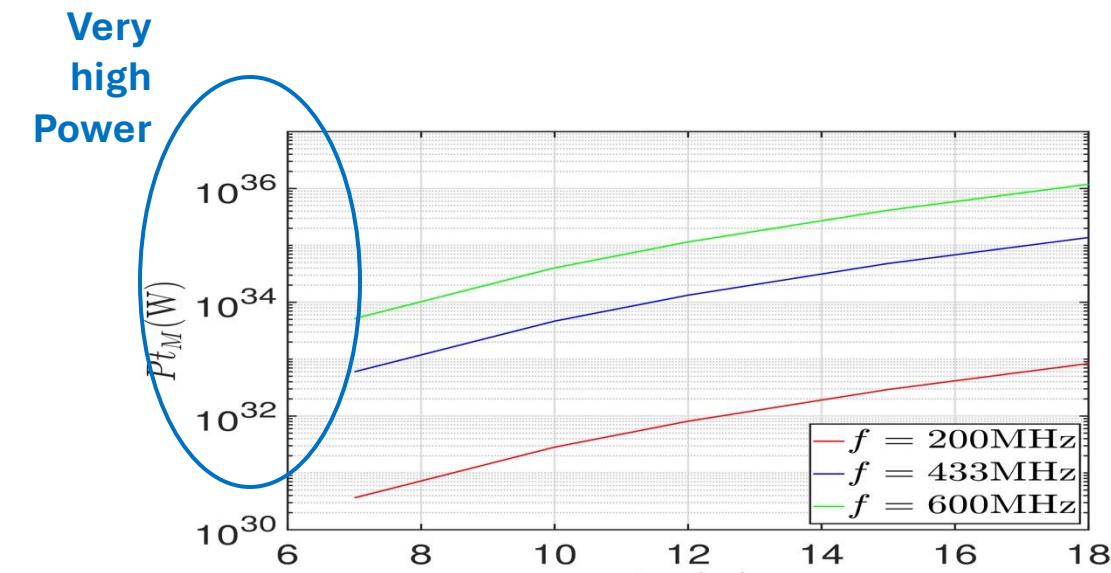
Experimental Setup

- We utilize a 433 MHz Underground testbed with 30% volumetric water content.
- Testbed utilizes antenna with $\lambda = 30\text{-}69\text{cm}$
- G uses **Full-Wave dipole antenna**
- L and T uses **Single Ended Elliptical antenna** with 10dB gains
- Distances $d_{GT}^{UG} = 0.35\text{m}$, $d_{Gi}^{UG} = 0.40\text{m}$, $d_{GT}^{OTA} = 7.8\text{m}$, $d_{Gi}^{OTA} = 7.0\text{m}$, $d_{Ti}^{UG} \approx 2\text{m}$
- Power transmit =10mW, 37 bytes packet size, 100ms inter packet time and TinyOS app to implement message transmission between nodes.

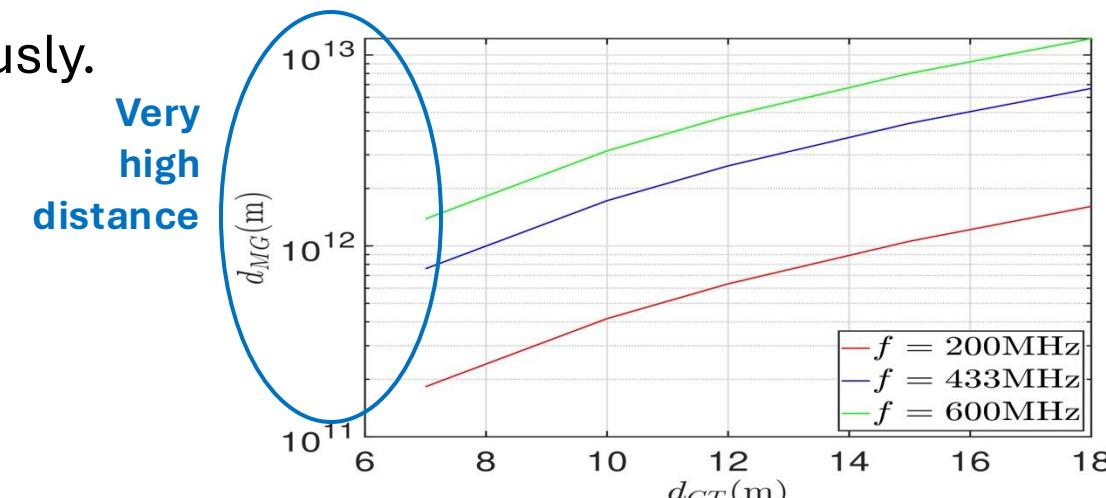
Experimental Evaluation: Type 1 Adversary



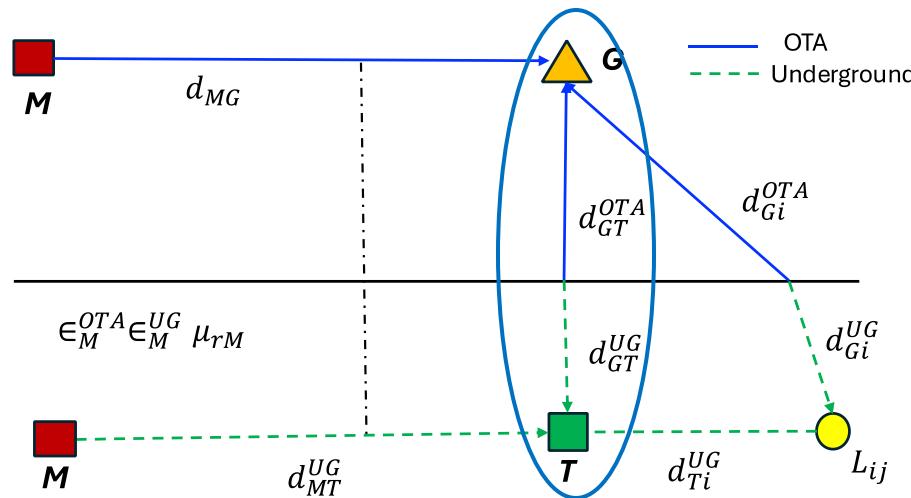
- Condition for adversary to defeat type 1 adversary
 - Equal **transmit powers** in step 3 and 5 to pass the verification at the **distance**, d_{MG} simultaneously.
- M must be placed extremely far from G
 - Step 3 fails
 - High attenuation.
 - Adversary needs to transmit very high power (L transmit on 3W)



Plot of distance and power transmitted against distance between T and G.

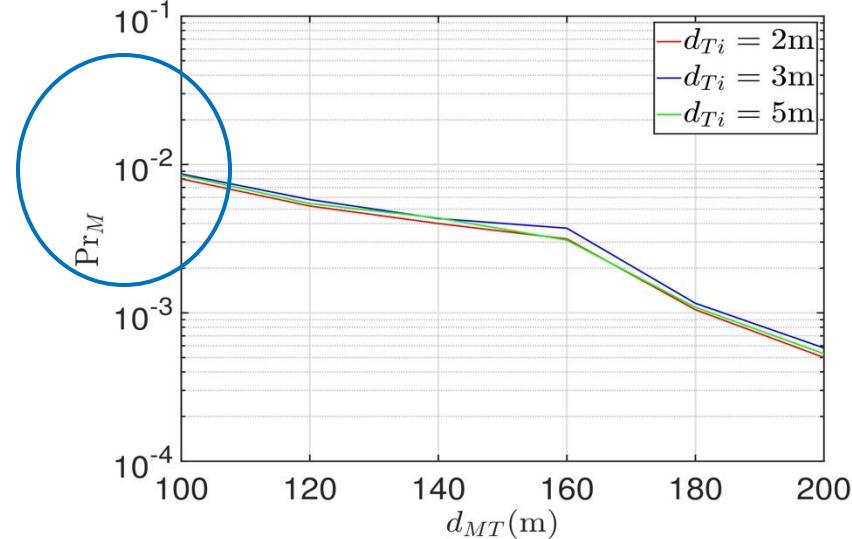


Experimental Evaluation: Type 2 Adversary



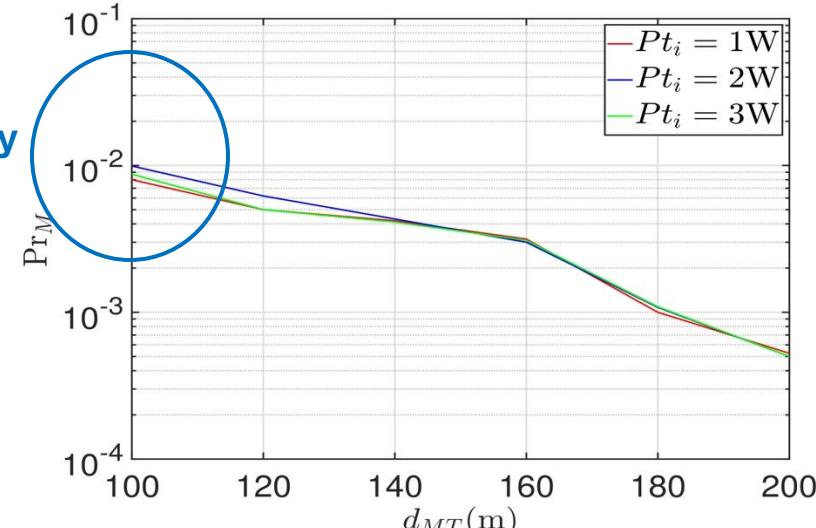
- Threshold, $\tau_{low}^T = 2.512 \times 10^{-7} mW$ to $\tau_{high}^T = 6.309 \times 10^{-7} mW$.
- The success probability, 8.6×10^{-3} and 5.8×10^{-4} (very low probability)
- Even though verification at G maybe possible since the channel is visible.
- Verification at T fails. It has to compute a system of equations which is NP-hard

Very low Success probability



Success probability of Type 2 adversary against distance between M and T

Very low Success probability



Summary

- We address the problem of **Trust Establishment** for underground wireless networks.
- We used **hard-to-forged** underground wireless propagation laws to achieve in band node authentication and secret establishment.
- We demonstrated that STUN is resilient to advanced attacks.

- [Oguchi, Ghose, Vuran, 2022, IEEE INFOCOM Wkshp Wireless-Sec]
- [Oguchi, Ghose, Vuran, 2024, IEEE TWC (Under-submission)]

Location Authentication for Over-The-Air and Underground Wireless Networks

* This work is a collaborative effort with Hakim Lado.

Radio Frequency (RF) Fingerprinting

- Operating Principle:
 - No two devices have the same fingerprint
- Uses:
 - Device Identification
 - Device Authentication
 - Indoor positioning and tracking
- Uniqueness Causes:
 - Hardware impairment / Manufacturing process variation
 - Serves as **discriminative features**
- Examples: Phase Noise, IQ imbalance

Can we **leverage physical-layer channel features** for location authentication across different environmental setups?

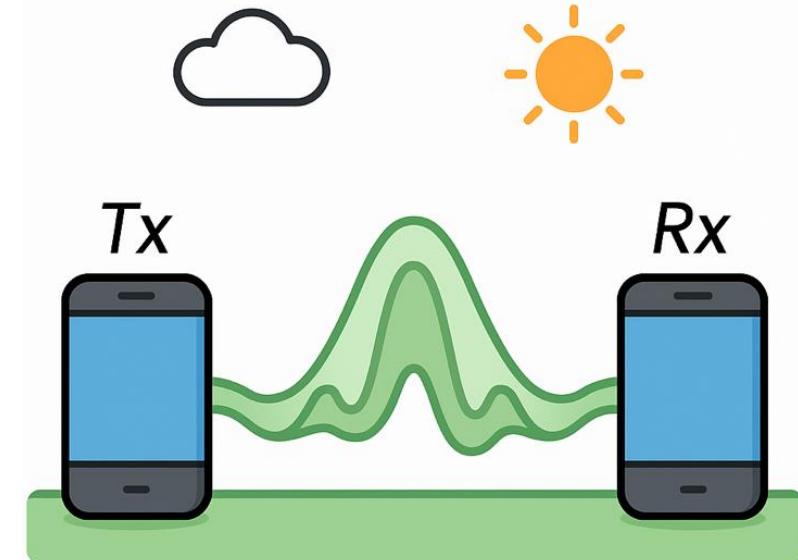
Yes!

CIR-based CNNs with fine-tuning

RF Fingerprint-Based Location Authentication for Over-The-Air and Underground Wireless Networks

- Why is CIR Hard-to-Forge?

- Location Specific -> **captures multipath profiles** of wireless channel
- Fine-Grained: Sensitive to small **spatial and temporal variations**, ideal for CNN learning
- Device-agnostic but environment-sensitive:
 - Even if an attacker uses the same hardware, **small location changes** can significantly alter the CIR due to phase shifts and reflections.
- Non-linear Mapping:
 - CIR features used in deep learning are extracted via complex, high-dimensional transformations, which are not easily invertible or imitable.

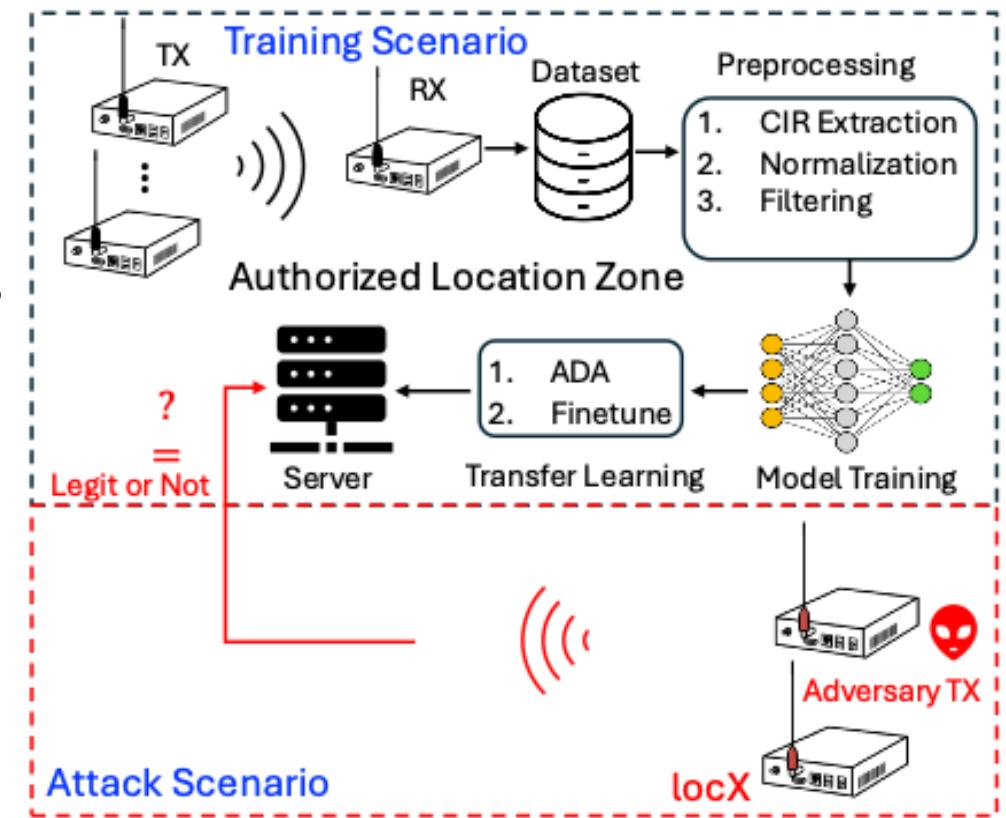


System Overview

- Transmitter (Tx_i): Sends signals from authorized locations (l_i).
- Receiver (Rx_i): received I/Q samples then extracts CIR.
- Server (S): Compares received CIRs to determine legitimate vs. adversarial location.

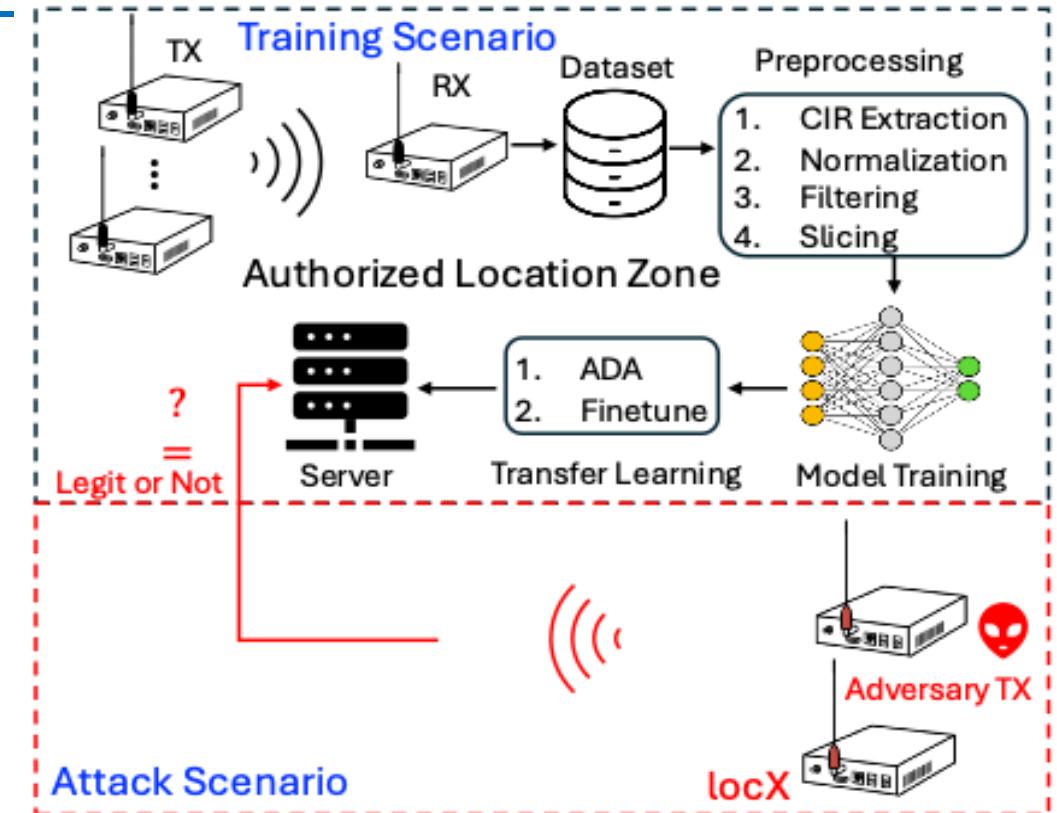
Key Assumptions:

- No pre-shared secret or encryption needed.
- CIR is used as a **location fingerprint**.
- System is **agnostic** to modulation, protocol, and minor device variations.



Threat Model

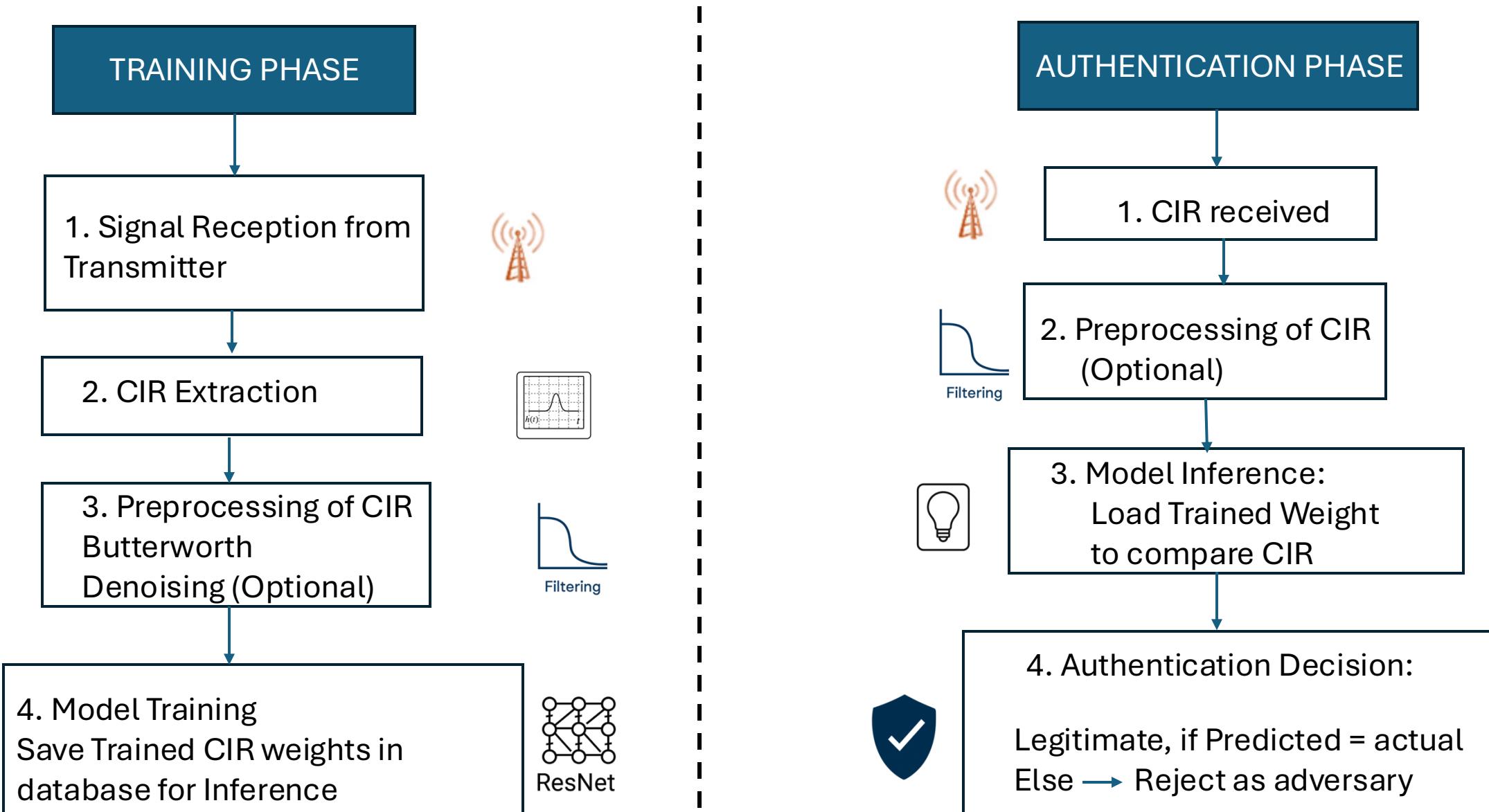
- Adversary Types:
 - Friis Empirical Attacker
 - Knows only **distance information**
 - Can estimates CIR using Friis' equation
 - Ignores multipath and noise effects
 - Ray-Tracing-Enhanced Adversary
 - Better mimics **multipath reflections** and **physical layout**
 - More powerful than Friis attacker



Assumption: No access to the server and legitimate CIR for spoofing

Goal: Fool the model by imitating location fingerprints from different zones

RF Fingerprint-Based Location Authentication Framework



Note: Signal is received from transmitter from one location and can test transmitters at multiple locations.

Mitigating Device Bias in CIR

- CIR is primarily location-dependent
 - Reflects **propagation environment** between a transmitter (Tx) and receiver (Rx): multipath, delay spread, attenuation, etc.
- CIR can still be device-affected
 - Hardware imperfections: Different oscillators, filters, ADCs.
 - Antenna patterns: Even slight variations can change received paths.
- Techniques to remove device effects from CIR
 - Filtering/preprocessing, Denoising, Transfer Learning / Fine-Tuning

System Architecture

COMPLETE MODEL PERFORMANCE ANALYSIS FOR LOCATION AUTHENTICATION

Model	Best Performance	Reliability	Key Characteristics
ResNet-50	85–95%	Excellent across all scenarios	Deep residual learning, handles complex spatial features
ResNet-34	80–92%	Very Reliable, best overall	Optimal depth-performance balance, consistent across environments
ResNet-18	75–90%	Very Reliable	Lightweight yet effective, good for resource-constrained deployment
In-Lab Model	70–85%	Reliable in controlled settings	Custom 5-layer CNN, baseline comparison model
GoogleNet	60–70%	Reasonably Reliable in ADA + Filtered settings	Inception modules provide moderate feature extraction
VGG16	50–60%	Inconsistent across TX/distance	Too deep without skip connections, suffers from vanishing gradients
VGG19	~33%	Unreliable, fails to generalize	Severe vanishing gradient problem, cannot learn location features

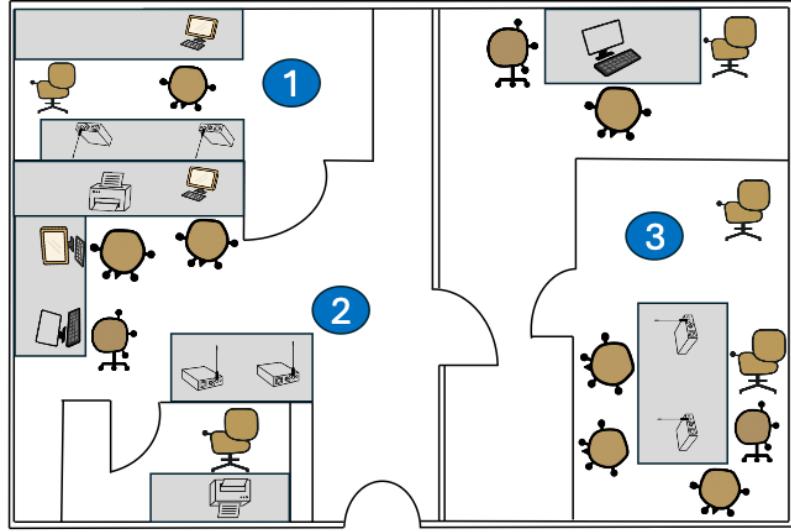
- Machine Learning Models
 - ResNet-18/34/50 (**Better**)
 - Compared with: In-lab, VGG16/19, GoogleNet
 - Metrics: Accuracy, Stability, Reliability

COMPARATIVE PERFORMANCE ANALYSIS OF FILTERING METHODS FOR LOCATION AUTHENTICATION

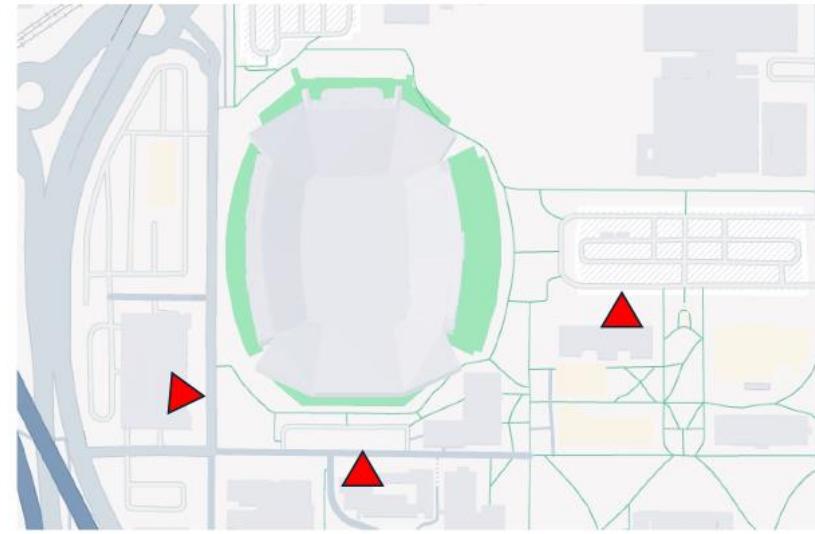
- Processing Pipeline:
 - Filtering -> Butterworth (**Better**)
 - Compared with: Moving Average, Elliptic
 - Denoising Autoencoder
- Domain adaptation / fine-tuning -> Improve our results

Filtering Method	Best Performance	Stability	Reliability
Butterworth	80-90%+	High	Excellent
Moving Average	~50-60%	Very Poor	Unreliable
Elliptic	~60-70%	Extremely Poor	Completely Unreliable

Experimental Setup



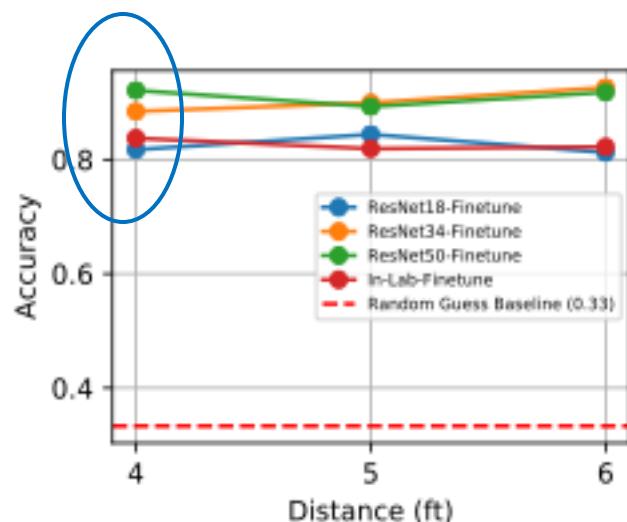
(a) Indoor setting



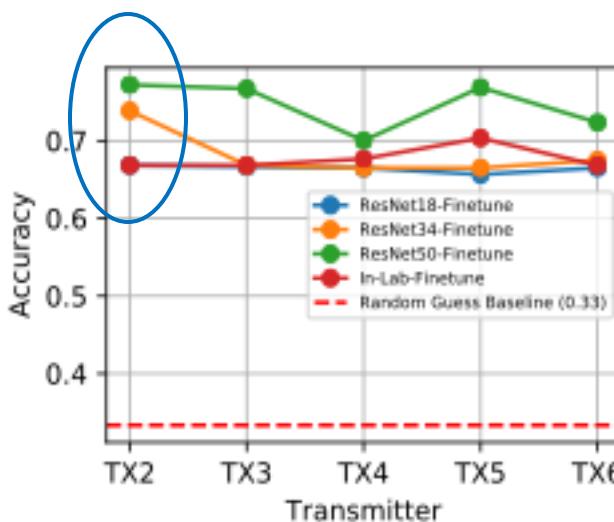
(b) Outdoor setting

- OTA testbed
 - Varying USRP (B-series) Transmitter/Receiver devices at various fixed locations
 - Same R_x Different T_x
 - Different R_x Different T_x
 - Varying USRP distances (4ft, 5ft, 6ft)
 - Same R_x Different T_x
 - Same R_x Same T_x

Outdoor Evaluation: Accuracy



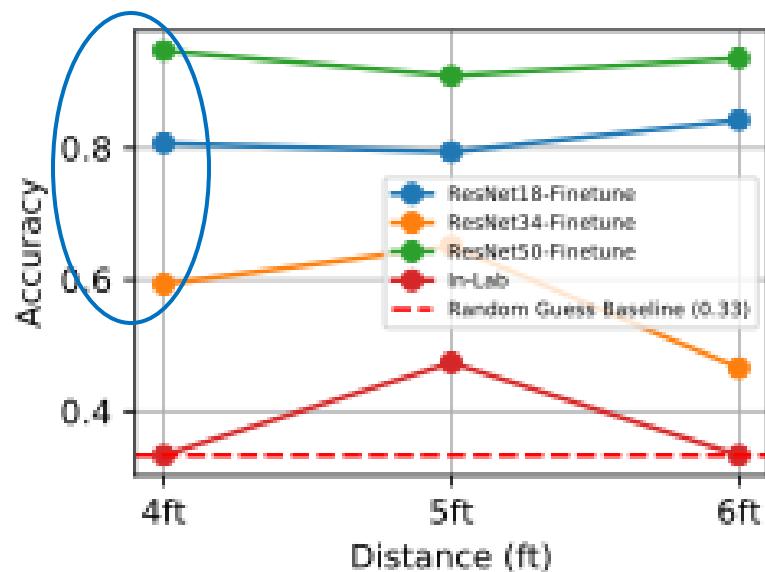
(a) Butterworth Finetune



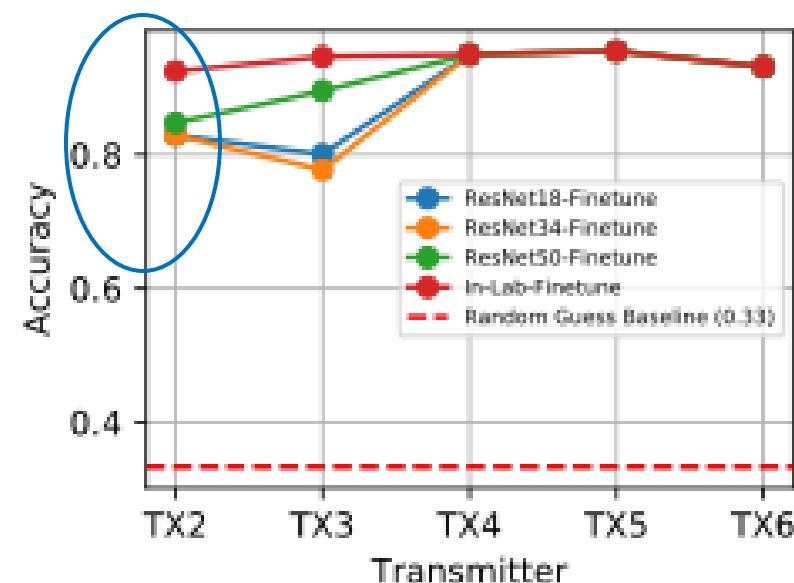
(b) Denoised Finetune

- ResNet-50 achieved > 80% across devices and distance
- Fine-tuned models + filter outperform baselines -> Best performance
- Domain adaptation/finetune **improves generalization**

Indoor Evaluation: Accuracy



(a) Distance



(a) Devices

- ResNet-50 achieved **> 85%** across devices and distance
- In-lab – **unstable** compared to ResNet
- Fine-tuned models + Butterworth + ReLU-> **Best performance**
- Denoising does not do well for Indoor Scenarios

Robustness Analysis – Friis-Based Adversary

- Friis-Based Adversary Model:

$$h_{Friis}(d) = \sqrt{G_t G_r} \left(\frac{\lambda}{4\pi d} e^{-j\frac{2\pi d}{\lambda}} \right)$$

- Attacker constructs synthetic channel using:

$$X_{Adv} = h_{Friis}(d_{Tx-Rx}) h_{Rx-Adv}$$

- Goal: Mimics legitimate CIR

$$Y = h_{Rx-Adv} X_{Adv} + n \approx h_{Rx-Tx} X + n$$

- Legitimate:

$$Y = h_{Rx-Tx} X + n$$

- Adversary:

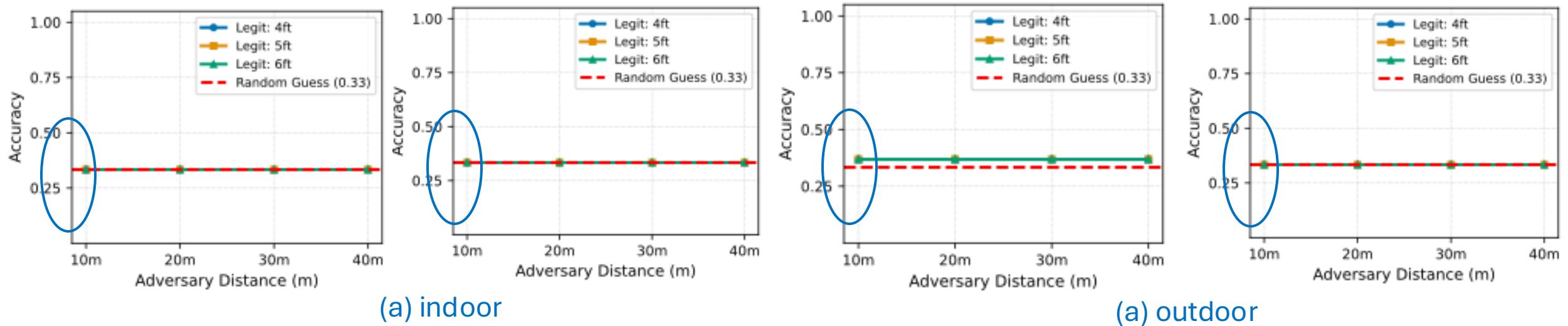
$$Y = h_{Rx-Adv} X_{Adv} + n$$

$$X_{Adv} = h_{Friis}(d_{Tx-Rx}) X$$

Friis attackers **fail** to replicate fine-grained CIR features due to:

- Environmental multipath variability – **Minimal or no knowledge**
- A **single-tap approximation**
- Inability to mimic deep features captured by CNNs

Robustness Analysis: Ray-Tracing-Enhanced Adversary



Evaluation Findings:

- **It still fails to breach model defenses:** accuracy for adversary remains $\sim 33\text{--}35\%$
- CNNs learn **non-trivial spatial-temporal patterns** difficult to replicate

Our Conclusion:

- Even with ray-tracing-generated CIRs, **attackers fail to replicate the true distribution of legitimate channel responses**, reinforcing the robustness of our location authentication system.

Summary

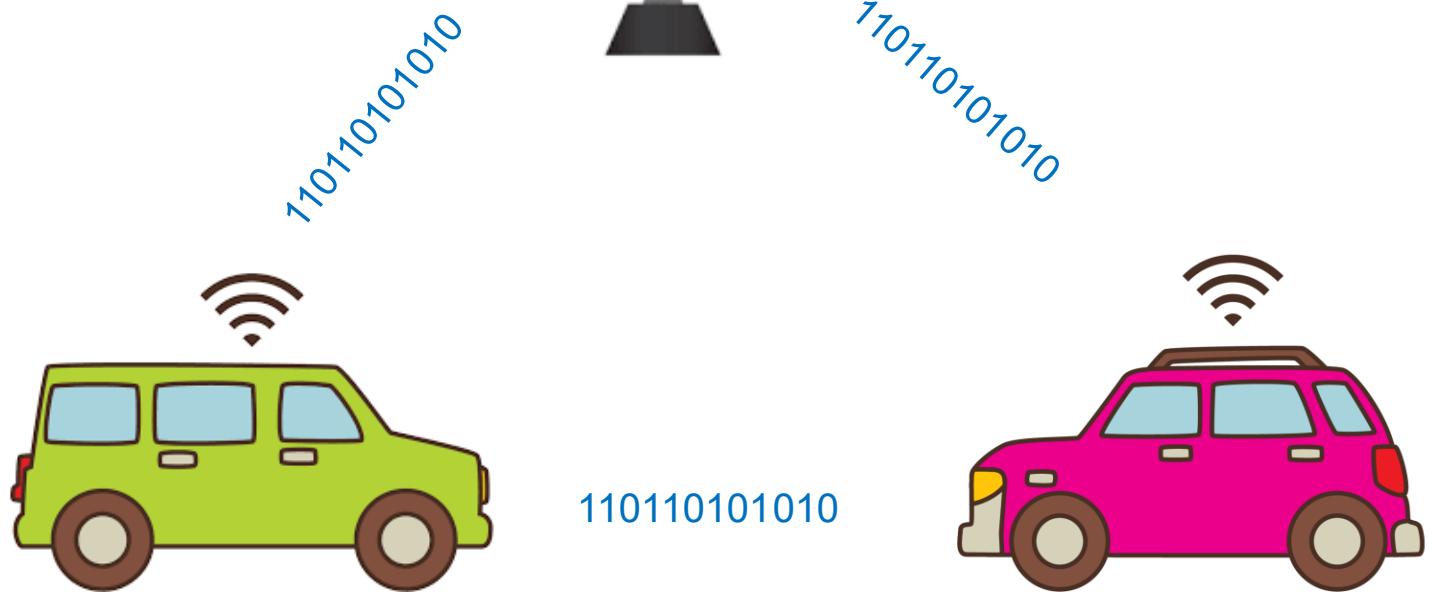
- Location Authentication with RF fingerprinting is viable in **dynamic environments**
- Deep learning + CIR features can resist advanced spoofing
- No secrets or key exchange required

Future Work

- Investigating the cutoff distance/range in indoor and outdoor experiment.
- Test with underground dataset

Security in Mobile Setting for Connected Autonomous Vehicles

Vehicular and Ad-hoc Networks



- Enhanced road safety
- Improved traffic management
- Passenger infotainment
- Reduced Traffic Congestion
- Better driving decision making

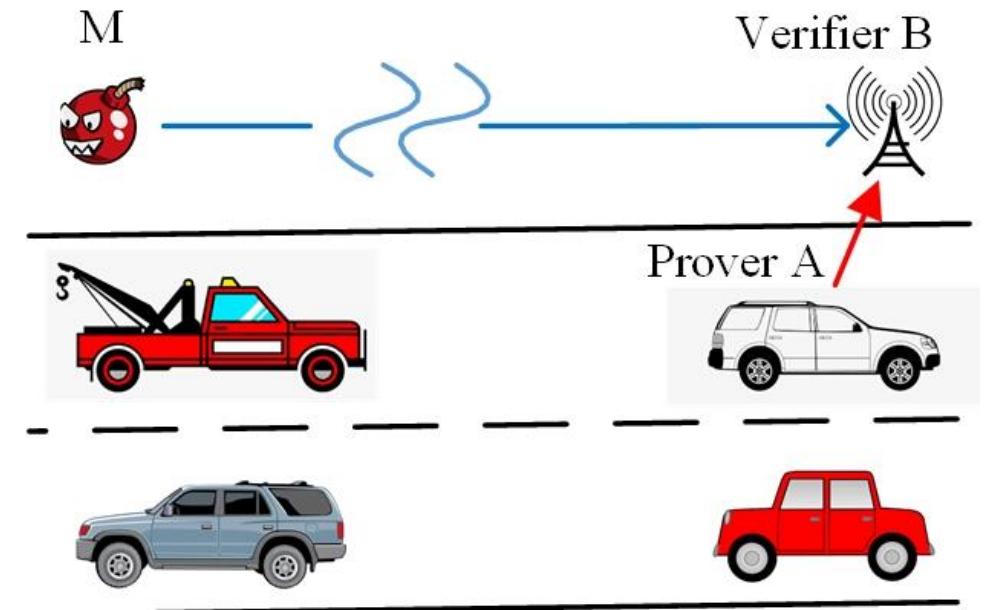
Can we **securely verify the truthfulness** of the location and velocity claims of an incoming vehicle to prevent attacks?

Yes!

Trajectory and Motion Vectors (TMV)

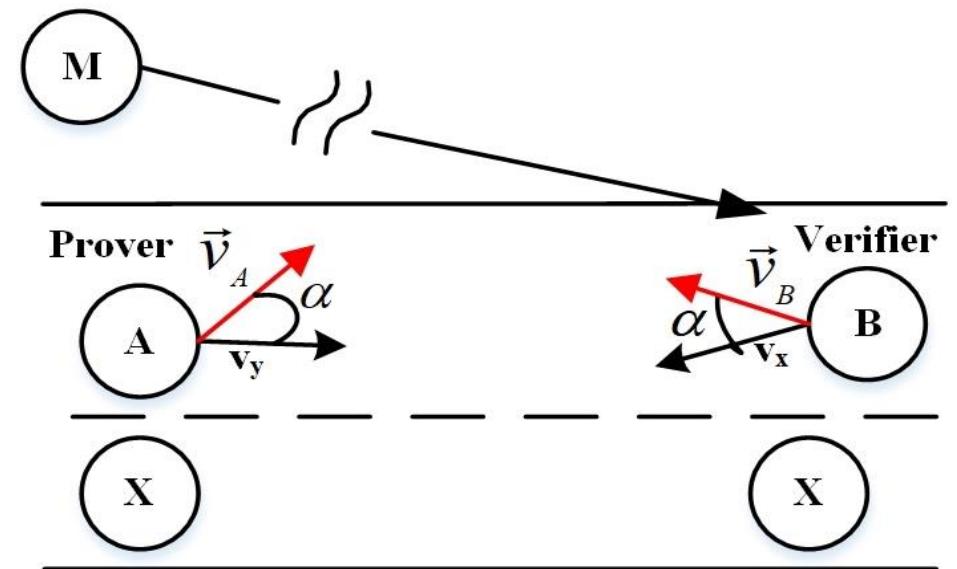
VET: Autonomous Vehicular Credential Verification using Trajectory and Motion Vectors

- Location and Velocity Information
 - Location = Direct Estimation
 - Velocity = Frequency of Arrival

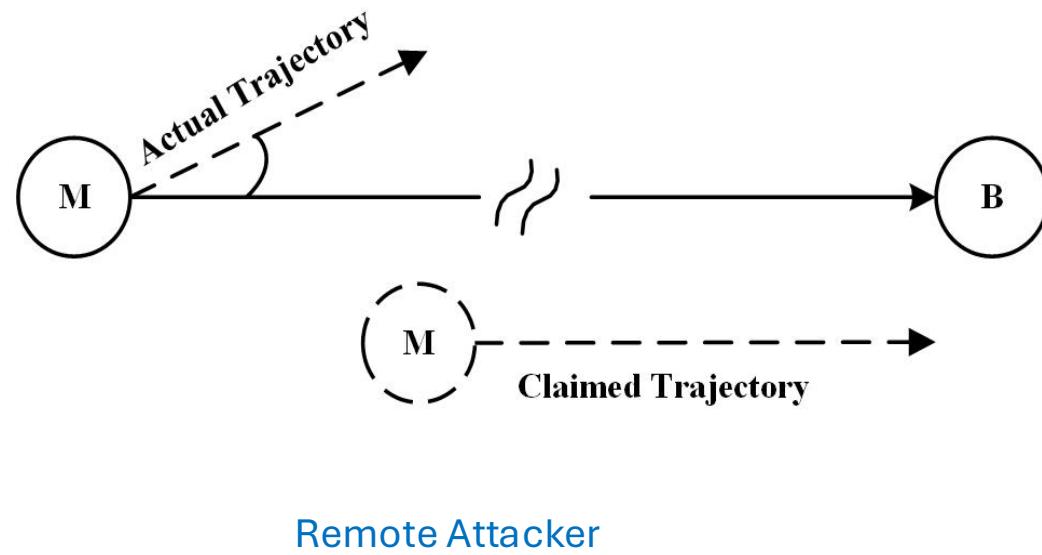
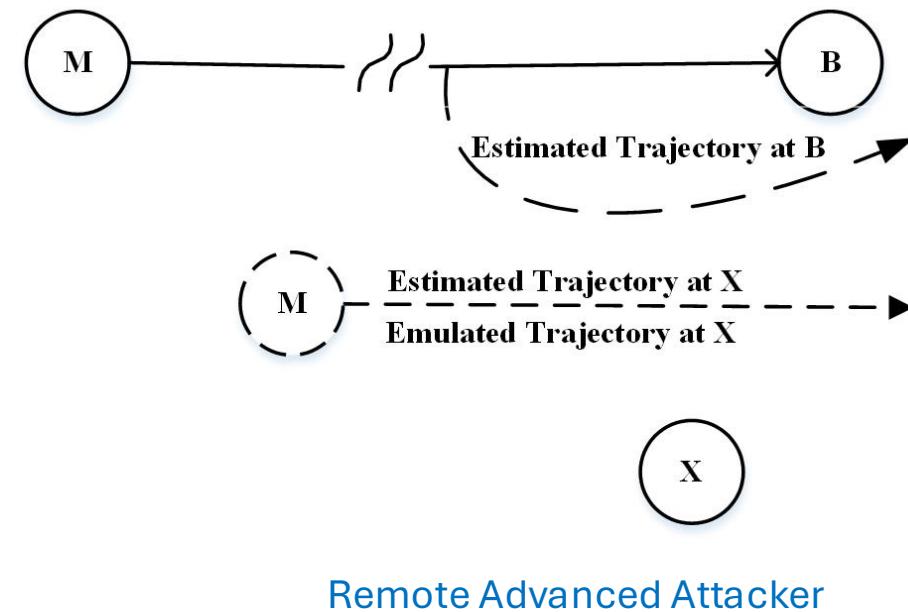


System Model

- The Legitimate Prover A
 - A uses **omnidirectional antenna**
 - Has **valid credentials** (PKI or Symmetric key)
- The Verifier B
 - Other truthful **Verifier X**
 - Perform verification **independently**
 - Verifiers do not require **mutual trust**.



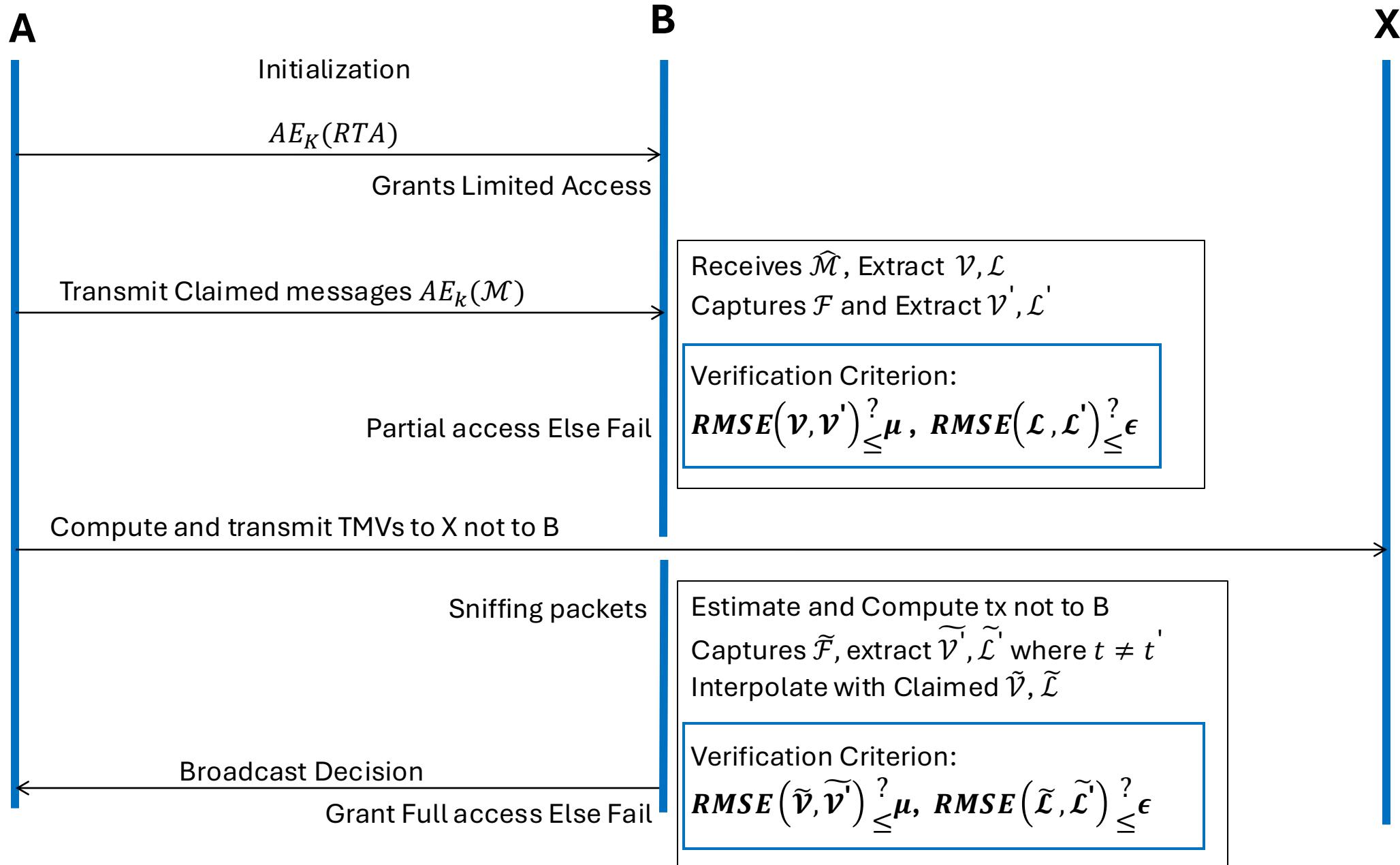
Threat Model



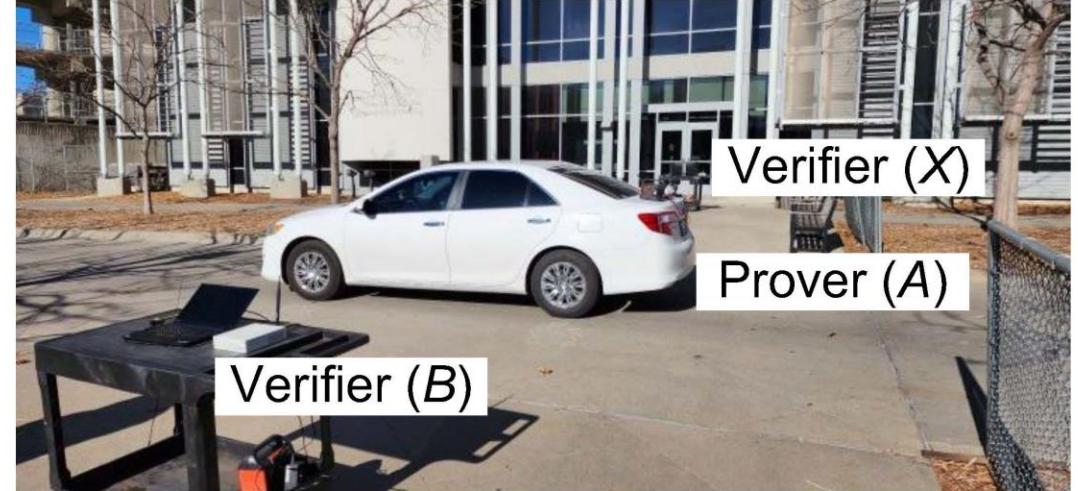
- Has **valid credentials**
- Within the communication range of B
- Attempting to Inject messages **without** modifying PHY-layer data

- Has **valid credentials**
- Can additionally **intentionally** modifying PHY-layer data.

VET: Credential Verification using Trajectory and Motion Vectors

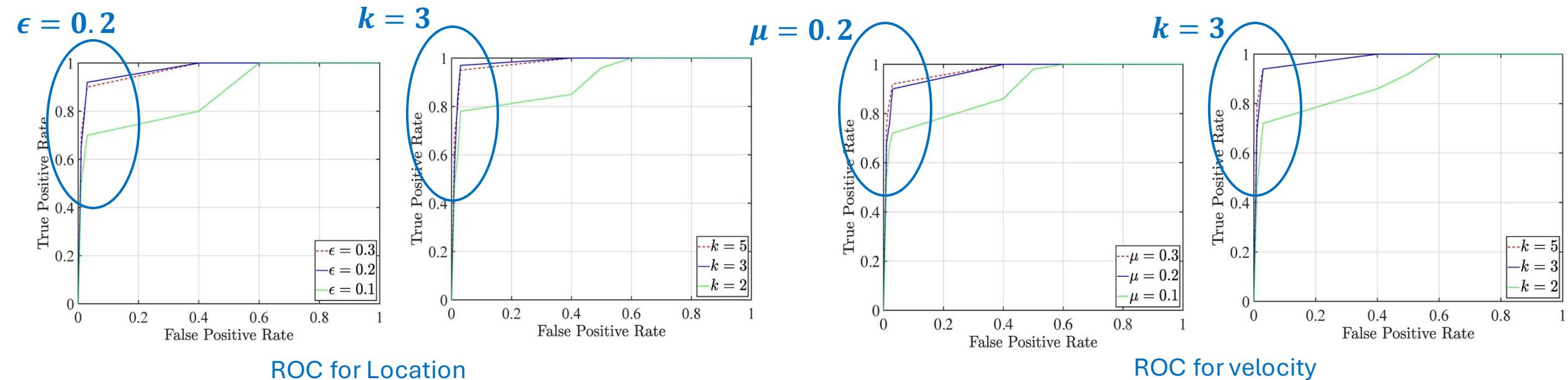


Experimental Setup



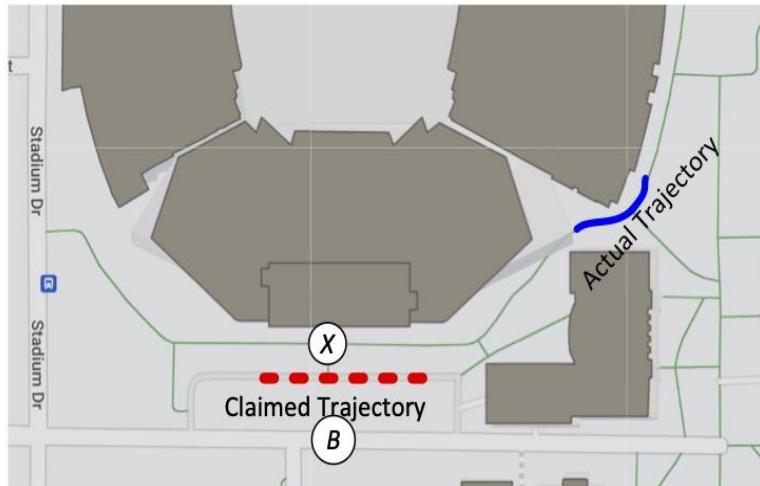
- We utilize a **USRP 2922** for the prover A, verifiers B, and X
- We broadcast **BPSK signals** at center frequency $f_o = 915MHz$ running GNU radio code.
- The prover and verifiers are connected to a **Lenovo ThinkPad T14 laptop**
- A GPS enabled phone that collects the **ground truth location and velocity**
- All laptops and phone are synchronized to use the same **Network time protocol server**.

Experimental Evaluation: Correctness Analysis



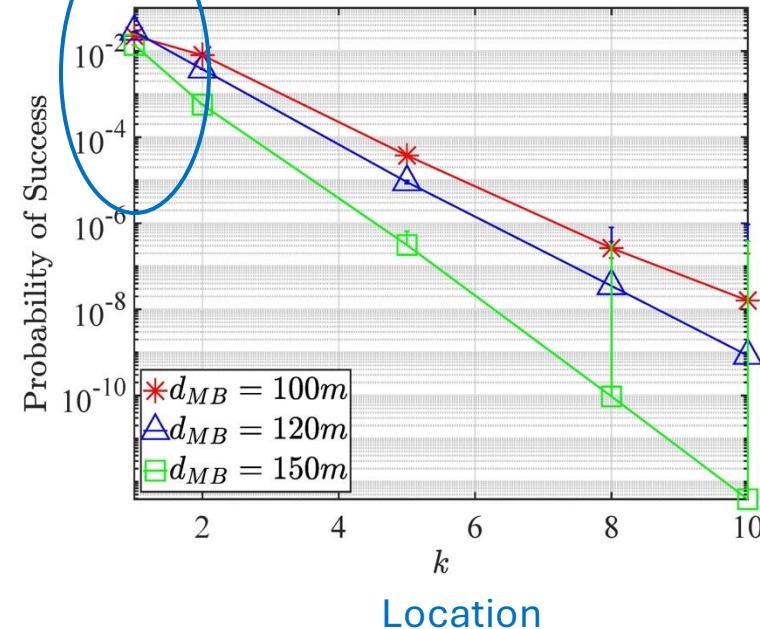
- We implement **FOA** and **Direct location** estimation and compute the **ROC**
- We compare our results with ground truth data.
- We evaluate two parameters
 - The **acceptable errors** (ϵ, μ) to set
 - The **number of trajectory point** (k) required to complete the verification.

Experimental Evaluation: Robustness Analysis



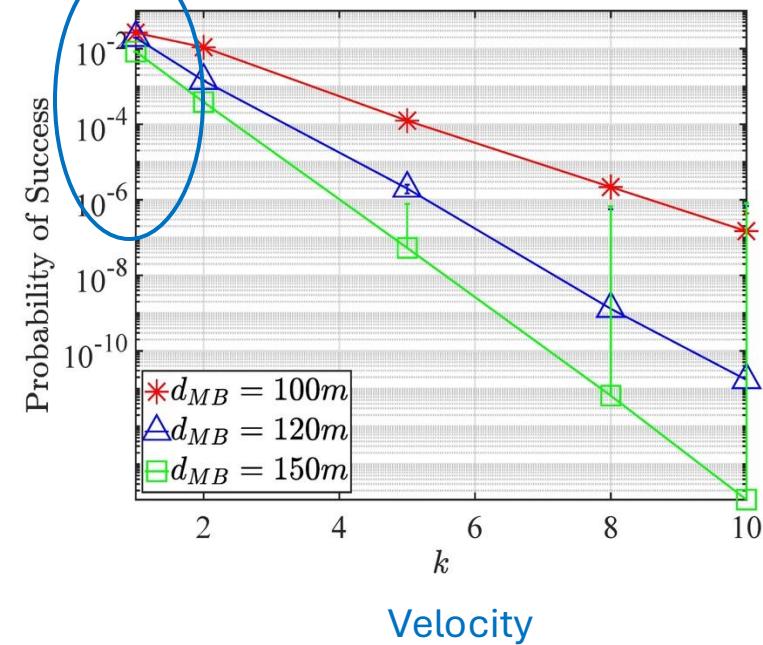
Trajectory

Very low



Location

Very low

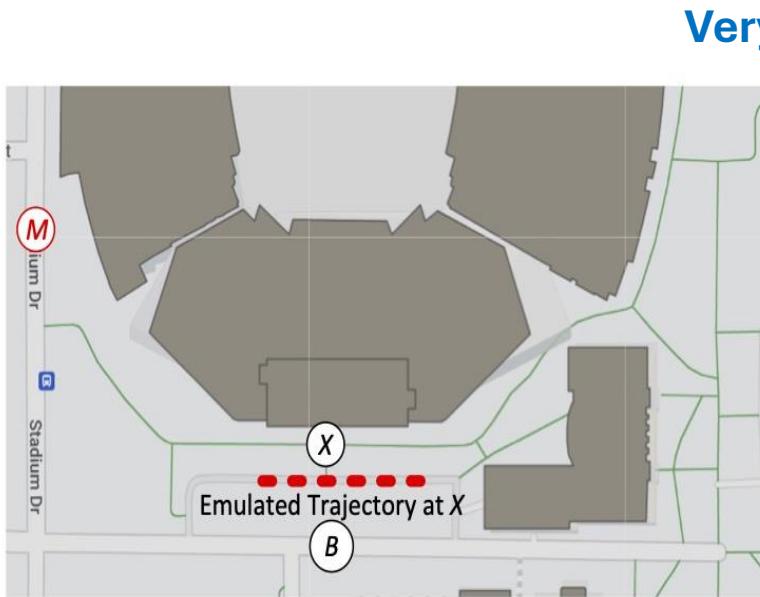


Velocity

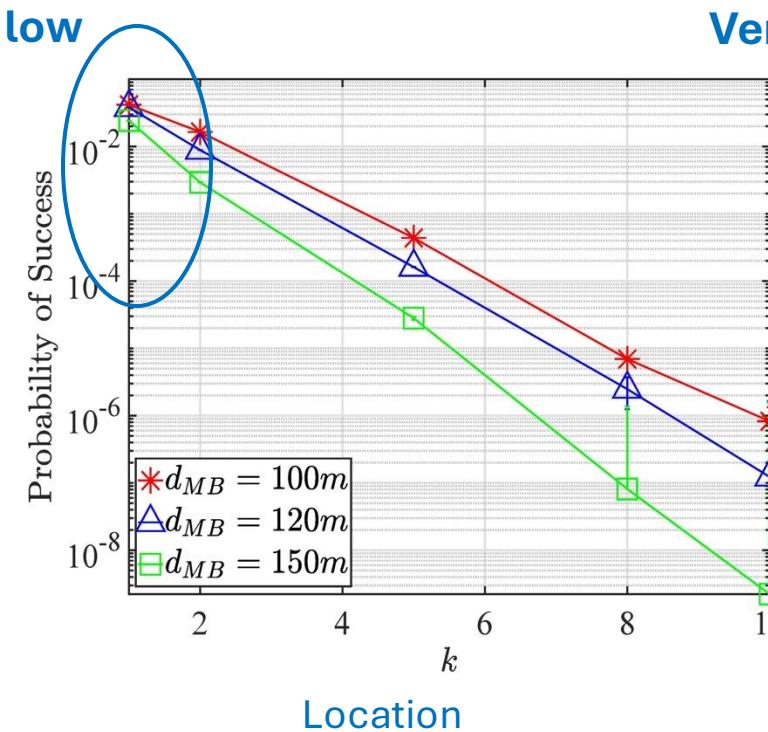
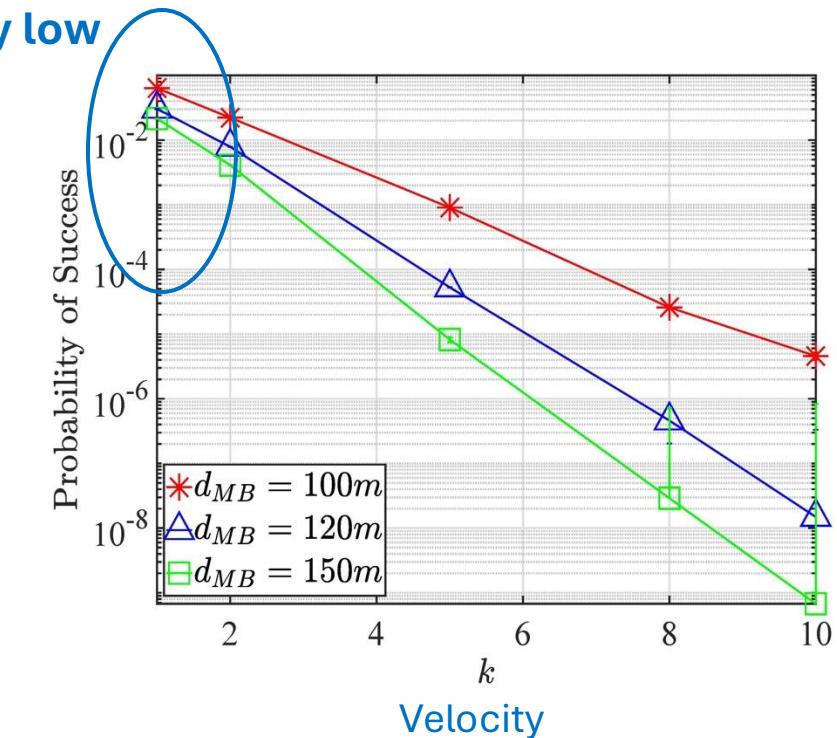
- The Remote Attacker

- VET can detect remote moving adversary attempting to inject rogue messages
- As distance increases, the probability of success decreases.

Experimental Evaluation: Robustness Analysis



Trajectory



- A Remote Advanced Attacker
 - We compute wireless Channel h_{MB} and h_{MX}
 - Adversary utilize the knowledge of the channel to emulate X
 - Probability of Success is **very low**

Summary

- We address the problem of secure **veracity verification** for autonomous vehicles using trajectory and motion vectors
- We implement a **location and motion based strategy** that verifies the claimed TMVs from randomly estimated TMVs
- VET can detect remote adversary injecting spoofed messages with **97% true positives**

[Oguchi, Ghose, 2023, EAI SecureComm]

List of Publications

Peer-Reviewed Conference Publications

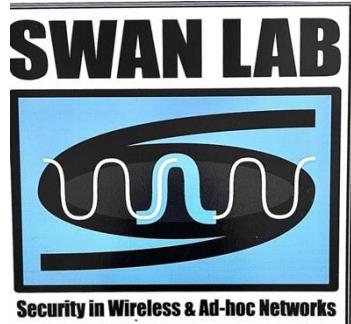
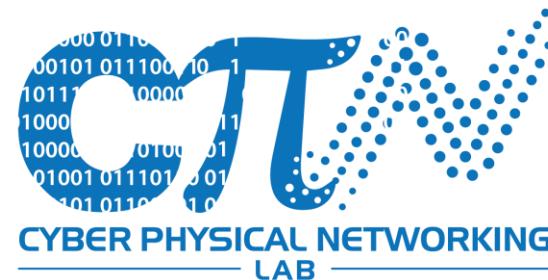
1. **Oguchi, Ebuka**; Ghose, Nirnimesh “*VET: Autonomous Vehicular Credential Verification using Trajectory and Motion Vectors*” In Proc. of EAI SecureComm 2023, Hong Kong SAR, pp. 1–23, Oct. 19–21, 2023. (Acceptance rate: 30.3%)
2. **Oguchi, Ebuka**; Ghose, Nirnimesh; Can Vuran, Mehmet “*STUN: Secret-Free Trust Establishment For Underground Wireless Networks*” In Proc. of IEEE INFOCOM Workshp on Wireless Security (Wireless-Sec), Virtual Event, pp. 1–6, May 2–5, 2022.

Under Review / In Preparation

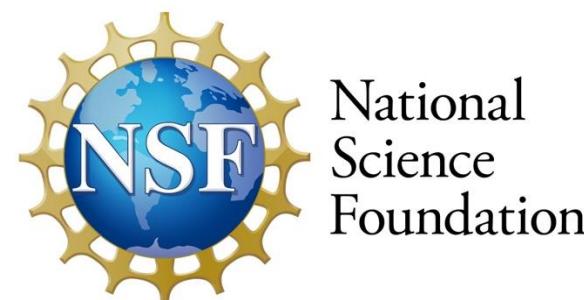
1. **Oguchi, Ebuka**; Ghose, Nirnimesh; Can Vuran, Mehmet “*Soil Assisted Trust-Establishment for Underground Internet-of-Things*” Under Review at IEEE Transactions on Wireless Communications (TWC), 2025.
2. Anderson, Malcolm I.; Duong, Truc T.; **Oguchi, Ebuka**; Wisniewska, Anna; Ghose, Nirnimesh “*Systematization of Knowledge for Security in Molecular and Nano-communications*” in Preparation for IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (TMBMC), 2025.
3. **Oguchi, Ebuka**; Lado, Hakim; Ghose, Nirnimesh; Wang, Boyang; Can Vuran, Mehmet “*RF Fingerprint-Based Location Authentication for Over-The-Air and Underground Wireless Networks*” In preparation for submission to the Network and Distributed System Security Symposium (NDSS), 2025.

Appreciation

- Collaborations: (special thanks to my advisor and other collaborators)



- Funding Support



Thank you!

&

Questions?